Search Results: an-introduction-to-statistics-with-python

An Introduction to Statistics with Python

With Applications in the Life Sciences

Author: Thomas Haslwanter

Publisher: Springer

ISBN: 3319283162

Category: Computers

Page: 278

View: 6344

This textbook provides an introduction to the free software Python and its use for statistical data analysis. It covers common statistical tests for continuous, discrete and categorical data, as well as linear regression analysis and topics from survival analysis and Bayesian statistics. Working code and data for Python solutions for each test, together with easy-to-follow Python examples, can be reproduced by the reader and reinforce their immediate understanding of the topic. With recent advances in the Python ecosystem, Python has become a popular language for scientific computing, offering a powerful environment for statistical data analysis and an interesting alternative to R. The book is intended for master and PhD students, mainly from the life and medical sciences, with a basic knowledge of statistics. As it also provides some statistics background, the book can be used by anyone who wants to perform a statistical data analysis.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 8156

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Einführung in Data Science

Grundprinzipien der Datenanalyse mit Python

Author: Joel Grus

Publisher: O'Reilly

ISBN: 3960100256

Category: Computers

Page: 352

View: 9218

Dieses Buch führt Sie in Data Science ein, indem es grundlegende Prinzipien der Datenanalyse erläutert und Ihnen geeignete Techniken und Werkzeuge vorstellt. Sie lernen nicht nur, wie Sie Bibliotheken, Frameworks, Module und Toolkits konkret einsetzen, sondern implementieren sie auch selbst. Dadurch entwickeln Sie ein tieferes Verständnis für die Zusammenhänge und erfahren, wie essenzielle Tools und Algorithmen der Datenanalyse im Kern funktionieren. Falls Sie Programmierkenntnisse und eine gewisse Sympathie für Mathematik mitbringen, unterstützt Joel Grus Sie dabei, mit den mathematischen und statistischen Grundlagen der Data Science vertraut zu werden und sich Programmierfähigkeiten anzueignen, die Sie für die Praxis benötigen. Dabei verwendet er Python: Die weitverbreitete Sprache ist leicht zu erlernen und bringt zahlreiche Bibliotheken für Data Science mit. Aus dem Inhalt: - Absolvieren Sie einen Crashkurs in Python - Lernen Sie die Grundlagen von linearer Algebra, Statistik und Wahrscheinlichkeitsrechnung kennen und erfahren Sie, wie diese in Data Science eingesetzt werden - Sammeln, untersuchen, bereinigen, bearbeiten und manipulieren Sie Daten - Tauchen Sie in die Welt des maschinellen Lernens ein - Implementieren Sie Modelle wie k-nearest Neighbors, Naive Bayes, lineare und logistische Regression, Entscheidungsbäume, neuronale Netzwerke und Clustering - Entdecken Sie Empfehlungssysteme, Sprachverarbeitung, Netzwerkanalyse, MapReduce und Datenbanken

Medizinische Statistik

Author: Hans J. Trampisch,Jürgen Windeler

Publisher: Springer-Verlag

ISBN: 364256996X

Category: Mathematics

Page: 376

View: 9673

"Statistiken sind merkwürdige Dinge ...", dies wird so mancher Mediziner denken, wenn er sich mit der Biometrie befaßt. Sei es im Rahmen seiner Ausbildung oder im Zuge wissenschaftlicher oder klinischer Studien, Kenntnisse der Statistik und Mathematik sind unentbehrlich für die tägliche Arbeit des Mediziners. Ziel dieses Lehrbuches ist es, den Mediziner systematisch an biometrische Terminologie und Arbeitsmethoden heranzuführen, um ihn schließlich mit den Grundlagen der Wahrscheinlichkeitsrechung vertraut zu machen. Nach der Lektüre dieses Buches hält der Leser ein Werkzeug in den Händen, das ihm bei der Lösung medizinscher Fragestellungen hilft ebenso wie bei der Beschreibung von Ergebnissen wissenschaftlicher Studien und natürlich bei der Doktorarbeit!

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 2737

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 3640

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

Python kinderleicht!

Einfach programmieren lernen – nicht nur für Kids

Author: Jason Briggs

Publisher: dpunkt.verlag

ISBN: 3864919053

Category: Computers

Page: 326

View: 8676

Python ist eine leistungsfähige, moderne Programmiersprache. Sie ist einfach zu erlernen und macht Spaß in der Anwendung – mit diesem Buch umso mehr! »Python kinderleicht" macht die Sprache lebendig und zeigt Dir (und Deinen Eltern) die Welt der Programmierung. Jason R. Briggs führt Dich Schritt für Schritt durch die Grundlagen von Python. Du experimentierst mit einzigartigen (und oft urkomischen) Beispielprogrammen, bei denen es um gefräßige Monster, Geheimagenten oder diebische Raben geht. Neue Begriffe werden erklärt, der Programmcode ist farbig dargestellt, strukturiert und mit Erklärungen versehen. Witzige Abbildungen erhöhen den Lernspaß. Jedes Kapitel endet mit Programmier-Rätseln, an denen Du das Gelernte üben und Dein Verständnis vertiefen kannst. Am Ende des Buches wirst Du zwei komplette Spiele programmiert haben: einen Klon des berühmten »Pong" und »Herr Strichmann rennt zum Ausgang" – ein Plattformspiel mit Sprüngen, Animation und vielem mehr. Indem Du Seite für Seite neue Programmierabenteuer bestehst, wirst Du immer mehr zum erfahrenen Python-Programmierer. - Du lernst grundlegende Datenstrukturen wie Listen, Tupel und Maps kennen. - Du erfährst, wie man mit Funktionen und Modulen den Programmcode organisieren und wiederverwenden kann. - Du wirst mit Kontrollstrukturen wie Schleifen und bedingten Anweisungen vertraut und lernst, mit Objekten und Methoden umzugehen. - Du zeichnest Formen mit dem Python-Modul Turtle und erstellst Spiele, Animationen und andere grafische Wunder mit tkinter. Und: »Python kinderleicht" macht auch für Erwachsene das Programmierenlernen zum Kinderspiel! Alle Programme findest Du auch zum Herunterladen auf der Website!

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3955618072

Category: Computers

Page: 320

View: 2973

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.

Struktur und Interpretation von Computerprogrammen

Eine Informatik-Einführung

Author: Harold Abelson,Gerald J. Sussman

Publisher: Springer-Verlag

ISBN: 3642977278

Category: Computers

Page: 682

View: 456

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

Author: Al Sweigart

Publisher: dpunkt.verlag

ISBN: 3864919932

Category: Computers

Page: 576

View: 9646

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

Introduction to Data Science

A Python Approach to Concepts, Techniques and Applications

Author: Laura Igual,Santi Seguí

Publisher: Springer

ISBN: 3319500171

Category: Computers

Page: 218

View: 1855

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the emerging and interdisciplinary field of data science. The coverage spans key concepts adopted from statistics and machine learning, useful techniques for graph analysis and parallel programming, and the practical application of data science for such tasks as building recommender systems or performing sentiment analysis. Topics and features: provides numerous practical case studies using real-world data throughout the book; supports understanding through hands-on experience of solving data science problems using Python; describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming; reviews a range of applications of data science, including recommender systems and sentiment analysis of text data; provides supplementary code resources and data at an associated website.

Einführung in Statistik und Messwertanalyse für Physiker

Monographie

Author: G. Bohm,G. Zech

Publisher: N.A

ISBN: 9783540257592

Category:

Page: 400

View: 581

Die Einf]hrung in die Statistik und Messwertanalyse f]r Physiker richtet sich weniger an mathematischen \berlegungen aus, sondern stellt die praktische Anwendung in den Vordergrund und schdrft die Intuition experimentelle Ergebnisse richtig einzuschdtzen. Zahlreiche ausf]hrlich betrachtete Beispiele dienen dazu, hdufig bei der Datenanalyse gemachte Fehler zu vermeiden (unsinnige Anwendung des Chi-Quadrattests, Funktionenanpassung bei falscher Parametrisierung, Entfaltung mit willk]rlicher Regularisierung). Ein besonderes Augenmerk wird auf den Vergleich von Daten mit Monte-Carlo-Simulationen gelenkt. Moderne Experimente kommen nicht ohne Simulation aus. Deshalb ist es wichtig zu wissen, wie Parameteranpassungen und Entfaltungen in diesem Fall durchgef]rt werden. Au_erdem werden den Studierenden moderne Entwicklungen der Statistik nahegebracht, die in dlteren Lehrb]chern nicht behandelt werden.

Statistik für Dummies

Author: Deborah J. Rumsey

Publisher: John Wiley & Sons

ISBN: 3527692762

Category: Education

Page: 355

View: 5059

Von A wie Ausreißer bis Z wie Z-Verteilung Entdecken Sie mit Statistik für Dummies Ihren Spaß an der Statistik und werfen Sie einen Blick hinter die Kulissen dieser komplizierten, aber hilfreichen Wissenschaft! Deborah Rumsey zeigt Ihnen das nötige statistische Handwerkszeug wie Stichprobe, Wahrscheinlichkeit, Bias, Median, Durchschnitt und Korrelation. Sie lernen die verschiedenen grafischen Darstellungsmöglichkeiten von statistischem Material kennen und werden über die unterschiedlichen Methoden der Auswertung erstaunt sein. Schärfen Sie mit diesem Buch Ihr Bewusstsein für Zahlen und deren Interpretation, sodass Ihnen keiner mehr etwas vormachen kann!

Python Crashkurs

Eine praktische, projektbasierte Programmiereinführung

Author: Eric Matthes

Publisher: dpunkt.verlag

ISBN: 3960881460

Category: Computers

Page: 622

View: 2646

"Python Crashkurs" ist eine kompakte und gründliche Einführung, die es Ihnen nach kurzer Zeit ermöglicht, Python-Programme zu schreiben, die für Sie Probleme lösen oder Ihnen erlauben, Aufgaben mit dem Computer zu erledigen. In der ersten Hälfte des Buches werden Sie mit grundlegenden Programmierkonzepten wie Listen, Wörterbücher, Klassen und Schleifen vertraut gemacht. Sie erlernen das Schreiben von sauberem und lesbarem Code mit Übungen zu jedem Thema. Sie erfahren auch, wie Sie Ihre Programme interaktiv machen und Ihren Code testen, bevor Sie ihn einem Projekt hinzufügen. Danach werden Sie Ihr neues Wissen in drei komplexen Projekten in die Praxis umsetzen: ein durch "Space Invaders" inspiriertes Arcade-Spiel, eine Datenvisualisierung mit Pythons superpraktischen Bibliotheken und eine einfache Web-App, die Sie online bereitstellen können. Während der Arbeit mit dem "Python Crashkurs" lernen Sie, wie Sie: - leistungsstarke Python-Bibliotheken und Tools richtig einsetzen – einschließlich matplotlib, NumPy und Pygal - 2D-Spiele programmieren, die auf Tastendrücke und Mausklicks reagieren, und die schwieriger werden, je weiter das Spiel fortschreitet - mit Daten arbeiten, um interaktive Visualisierungen zu generieren - Web-Apps erstellen und anpassen können, um diese sicher online zu deployen - mit Fehlern umgehen, die häufig beim Programmieren auftreten Dieses Buch wird Ihnen effektiv helfen, Python zu erlernen und eigene Programme damit zu entwickeln. Warum länger warten? Fangen Sie an!

Comparative Approaches to Using R and Python for Statistical Data Analysis

Author: Sarmento, Rui,Costa, Vera

Publisher: IGI Global

ISBN: 1522519890

Category: Business & Economics

Page: 197

View: 7923

The application of statistics has proliferated in recent years and has become increasingly relevant across numerous fields of study. With the advent of new technologies, its availability has opened into a wider range of users. Comparative Approaches to using R and Python for Statistical Data Analysis is a comprehensive source of emerging research and perspectives on the latest computer software and available languages for the visualization of statistical data. By providing insights on relevant topics, such as inference, factor analysis, and linear regression, this publication is ideally designed for professionals, researchers, academics, graduate students, and practitioners interested in the optimization of statistical data analysis.

Neuronale Netze selbst programmieren

Ein verständlicher Einstieg mit Python

Author: Tariq Rashid

Publisher: O'Reilly

ISBN: 3960101031

Category: Computers

Page: 232

View: 3433

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 9283

R für Dummies

Author: Andrie de Vries,Joris Meys

Publisher: John Wiley & Sons

ISBN: 3527812520

Category: Computers

Page: 414

View: 9293

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

Einführung in Python

Author: Mark Lutz,David Ascher,Dinu C. Gherman

Publisher: O'Reilly Germany

ISBN: 3897214881

Category: Python (Computer program language)

Page: 624

View: 9601

Find eBook