Search Results: analysis-now-graduate-texts-in-mathematics

Analysis Now

Author: Gert K. Pedersen

Publisher: Springer Science & Business Media

ISBN: 1461210070

Category: Mathematics

Page: 280

View: 1840

Graduate students in mathematics, who want to travel light, will find this book invaluable; impatient young researchers in other fields will enjoy it as an instant reference to the highlights of modern analysis. Starting with general topology, it moves on to normed and seminormed linear spaces. From there it gives an introduction to the general theory of operators on Hilbert space, followed by a detailed exposition of the various forms the spectral theorem may take; from Gelfand theory, via spectral measures, to maximal commutative von Neumann algebras. The book concludes with two supplementary chapters: a concise account of unbounded operators and their spectral theory, and a complete course in measure and integration theory from an advanced point of view.

Real and Abstract Analysis

A modern treatment of the theory of functions of a real variable

Author: Edwin Hewitt,Karl Stromberg

Publisher: Springer-Verlag

ISBN: 3662297949

Category: Mathematics

Page: 476

View: 8684

Automorphe Formen

Author: Anton Deitmar

Publisher: Springer-Verlag

ISBN: 3642123902

Category: Mathematics

Page: 252

View: 9108

Das Buch bietet eine Einführung in die Theorie der automorphen Formen. Beginnend bei klassischen Modulformen führt der Autor seine Leser hin zur modernen, darstellungstheoretischen Beschreibung von automorphen Formen und ihren L-Funktionen. Das Hauptgewicht legt er auf den Übergang von der klassischen, elementaren Sichtweise zu der modernen, durch die Darstellungstheorie begründete Herangehensweise. Diese Art der Verbindung von klassischer und moderner Sichtweise war in der Lehrbuchliteratur bisher nicht zu finden.

Principles of Harmonic Analysis

Author: Anton Deitmar,Siegfried Echterhoff

Publisher: Springer

ISBN: 3319057928

Category: Mathematics

Page: 332

View: 8855

This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.

Foundations of Real and Abstract Analysis

Author: Douglas S. Bridges

Publisher: Springer Science & Business Media

ISBN: 0387982396

Category: Business & Economics

Page: 322

View: 5176

A complete course on metric, normed, and Hilbert spaces, including many results and exercises seldom found in texts on analysis at this level. The author covers an unusually wide range of material in a clear and concise format, including elementary real analysis, Lebesgue integration on R, and an introduction to functional analysis. The book begins with a fast-paced course on real analysis, followed by an introduction to the Lebesgue integral. This provides a reference for later chapters as well as a preparation for students with only the typical sequence of undergraduate calculus courses as prerequisites. Other features include a chapter introducing functional analysis, the Hahn-Banach theorem and duality, separation theorems, the Baire Category Theorem, the Open Mapping Theorem and their consequences, and unusual applications. Of special interest are the 750 exercises, many with guidelines for their solutions, applications and extensions of the main propositions and theorems, pointers to new branches of the subject, and difficult challenges for the very best students.

Stochastic Analysis in Mathematical Physics

Proceedings of a Satellite Conference of ICM 2006, Lisbon, Portugal, 4-8 September 2006

Author: Gerard Ben Arous

Publisher: World Scientific

ISBN: 981279154X

Category: Science

Page: 147

View: 3505

The ideas and principles of stochastic analysis have managed to penetrate into various fields of pure and applied mathematics in the last 15 years; it is particularly true for mathematical physics. This volume provides a wide range of applications of stochastic analysis in fields as varied as statistical mechanics, hydrodynamics, Yang-Mills theory and spin-glass theory.The proper concept of stochastic dynamics relevant to each type of application is described in detail here. Altogether, these approaches illustrate the reasons why their dissemination in other fields is likely to accelerate in the years to come.

Funktionentheorie

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073498

Category: Mathematics

Page: 533

View: 8018

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebmische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± v'-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + v'-121 + ~2 - v'-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z. B. VI + v'=3 + Vl- v'=3 = v'6. Im Jahre 1777 führte L. EULER die Bezeichnung i = A für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.

Modern Fourier Analysis

Author: Loukas Grafakos

Publisher: Springer Science & Business Media

ISBN: 0387094342

Category: Mathematics

Page: 507

View: 7093

The great response to the publication of the book Classical and Modern Fourier Analysishasbeenverygratifying.IamdelightedthatSpringerhasofferedtopublish the second edition of this book in two volumes: Classical Fourier Analysis, 2nd Edition, and Modern Fourier Analysis, 2nd Edition. These volumes are mainly addressed to graduate students who wish to study Fourier analysis. This second volume is intended to serve as a text for a seco- semester course in the subject. It is designed to be a continuation of the rst v- ume. Chapters 1–5 in the rst volume contain Lebesgue spaces, Lorentz spaces and interpolation, maximal functions, Fourier transforms and distributions, an introd- tion to Fourier analysis on the n-torus, singular integrals of convolution type, and Littlewood–Paley theory. Armed with the knowledgeof this material, in this volume,the reader encounters more advanced topics in Fourier analysis whose development has led to important theorems. These theorems are proved in great detail and their proofs are organized to present the ow of ideas. The exercises at the end of each section enrich the material of the corresponding section and provide an opportunity to develop ad- tional intuition and deeper comprehension. The historical notes in each chapter are intended to provide an account of past research but also to suggest directions for further investigation. The auxiliary results referred to the appendix can be located in the rst volume.

Maß und Kategorie

Author: J.C. Oxtoby

Publisher: Springer-Verlag

ISBN: 364296074X

Category: Mathematics

Page: 112

View: 3587

Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

Complex Analysis

Author: Serge Lang

Publisher: Springer

ISBN: 3642592732

Category: Mathematics

Page: 458

View: 5924

The present book is meant as a text for a course on complex analysis at the advanced undergraduate level, or first-year graduate level. The first half, more or less, can be used for a one-semester course addressed to undergraduates. The second half can be used for a second semester, at either level. Somewhat more material has been included than can be covered at leisure in one or two terms, to give opportunities for the instructor to exercise individual taste, and to lead the course in whatever directions strikes the instructor's fancy at the time as well as extra read ing material for students on their own. A large number of routine exer cises are included for the more standard portions, and a few harder exercises of striking theoretical interest are also included, but may be omitted in courses addressed to less advanced students. In some sense, I think the classical German prewar texts were the best (Hurwitz-Courant, Knopp, Bieberbach, etc. ) and I would recommend to anyone to look through them. More recent texts have emphasized connections with real analysis, which is important, but at the cost of exhibiting succinctly and clearly what is peculiar about complex analysis: the power series expansion, the uniqueness of analytic continuation, and the calculus of residues.

Introduction to Modern Analysis

Author: Shmuel Kantorovitz

Publisher: OUP Oxford

ISBN: 9780191523557

Category: Mathematics

Page: 448

View: 9976

This text is based on lectures given by the author at the advanced undergraduate and graduate levels in Measure Theory, Functional Analysis, Banach Algebras, Spectral Theory (of bounded and unbounded operators), Semigroups of Operators, Probability and Mathematical Statistics, and Partial Differential Equations. The first 10 chapters discuss theoretical methods in Measure Theory and Functional Analysis, and contain over 120 end of chapter exercises. The final two chapters apply theory to applications in Probability Theory and Partial Differential Equations. The Measure Theory chapters discuss the Lebesgue-Radon-Nikodym theorem which is given the Von Neumann Hilbert space proof. Also included are the relatively advanced topics of Haar measure, differentiability of complex Borel measures in Euclidean space with respect to Lebesgue measure, and the Marcinkiewicz' interpolation theorem for operators between Lebesgue spaces. The Functional Analysis chapters cover the usual material on Banach spaces, weak topologies, separation, extremal points, the Stone-Weierstrass theorem, Hilbert spaces, Banach algebras, and Spectral Theory for both bounded and unbounded operators. Relatively advanced topics such as the Gelfand-Naimark-Segal representation theorem and the Von Neumann double commutant theorem are included. The final two chapters deal with applications, where the measure theory and functional analysis methods of the first ten chapters are applied to Probability Theory and the Theory of Distributions and PDE's. Again, some advanced topics are included, such as the Lyapounov Central Limit theorem, the Kolmogoroff "Three Series theorem", the Ehrenpreis-Malgrange-Hormander theorem on fundamental solutions, and Hormander's theory of convolution operators. The Oxford Graduate Texts in Mathematics series aim is to publish textbooks suitable for graduate students in mathematics and its applications. The level of books may range from some suitable for advanced undergraduate courses at one end, to others of interest to research workers. The emphasis is on texts of high mathematical quality in active areas, particularly areas that are not well represented in the literature at present.

A Course in Functional Analysis

Author: John B. Conway

Publisher: Springer Science & Business Media

ISBN: 9780387972459

Category: Mathematics

Page: 400

View: 2739

This book is an introductory text in functional analysis. Unlike many modern treatments, it begins with the particular and works its way to the more general. From the reviews: "This book is an excellent text for a first graduate course in functional analysis....Many interesting and important applications are included....It includes an abundance of exercises, and is written in the engaging and lucid style which we have come to expect from the author." --MATHEMATICAL REVIEWS

A Course in p-adic Analysis

Author: Alain M. Robert

Publisher: Springer Science & Business Media

ISBN: 1475732546

Category: Mathematics

Page: 438

View: 7128

Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text is a self-contained presentation of basic p-adic analysis with a focus on analytic topics. It offers many features rarely treated in introductory p-adic texts such as topological models of p-adic spaces inside Euclidian space, a special case of Hazewinkel’s functional equation lemma, and a treatment of analytic elements.

Mathematical Analysis

An Introduction

Author: Andrew Browder

Publisher: Springer Science & Business Media

ISBN: 1461207150

Category: Mathematics

Page: 335

View: 7411

Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Graphentheorie

Author: Reinhard Diestel

Publisher: Springer Spektrum

ISBN: 9783662536339

Category: Mathematics

Page: 355

View: 2879

Detailliert und klar, aber mit Blick auf das Wesentliche, führt das Buch in die Graphentheorie ein. Zu jedem Thema stellt der Autor die Grundlagen dar und beweist dann typische Sätze – oftmals ergänzt durch eine Diskussion ihrer tragenden Ideen. So vermittelt er exemplarisch die wichtigsten Methoden der heutigen Graphentheorie, einschließlich moderner Techniken wie Regularitätslemma, Zufallsgraphen, Baumzerlegungen und Minoren. Für die 4., aktualisierte und ergänzte Auflage würden sämtliche Übungsaufgaben mit vollständigen Lösungshinweisen versehen.

Einführung in die Komplexe Analysis

Elemente der Funktionentheorie

Author: Wolfgang Fischer,Ingo Lieb

Publisher: Springer-Verlag

ISBN: 9783834806635

Category: Mathematics

Page: 214

View: 3838

In den Bachelor-Studiengängen der Mathematik steht für die Komplexe Analysis (Funktionentheorie) oft nur eine einsemestrige 2-stündige Vorlesung zur Verfügung. Dieses Buch eignet sich als Grundlage für eine solche Vorlesung im 2. Studienjahr. Mit einer guten thematischen Auswahl, vielen Beispielen und ausführlichen Erläuterungen gibt dieses Buch eine Darstellung der Komplexen Analysis, die genau die Grundlagen und den wesentlichen Kernbestand dieses Gebietes enthält. Das Buch bietet über diese Grundausbildung hinaus weiteres Lehrmaterial als Ergänzung, sodass es auch für eine 3- oder 4 –stündige Vorlesung geeignet ist. Je nach Hörerkreis kann der Stoff unterschiedlich erweitert werden. So wurden für den „Bachelor Lehramt“ die geometrischen Aspekte der Komplexen Analysis besonders herausgearbeitet.

Matrix Analysis

Author: Rajendra Bhatia

Publisher: Springer Science & Business Media

ISBN: 1461206537

Category: Mathematics

Page: 349

View: 4223

This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.

Elementary Functional Analysis

Author: Barbara MacCluer

Publisher: Springer Science & Business Media

ISBN: 0387855297

Category: Mathematics

Page: 208

View: 3615

Functional analysis arose in the early twentieth century and gradually, conquering one stronghold after another, became a nearly universal mathematical doctrine, not merely a new area of mathematics, but a new mathematical world view. Its appearance was the inevitable consequence of the evolution of all of nineteenth-century mathematics, in particular classical analysis and mathematical physics. Its original basis was formed by Cantor’s theory of sets and linear algebra. Its existence answered the question of how to state general principles of a broadly interpreted analysis in a way suitable for the most diverse situations. A.M. Vershik ([45], p. 438). This text evolved from the content of a one semester introductory course in fu- tional analysis that I have taught a number of times since 1996 at the University of Virginia. My students have included ?rst and second year graduate students prep- ing for thesis work in analysis, algebra, or topology, graduate students in various departments in the School of Engineering and Applied Science, and several und- graduate mathematics or physics majors. After a ?rst draft of the manuscript was completed, it was also used for an independent reading course for several und- graduates preparing for graduate school.

Gewalt

Eine neue Geschichte der Menschheit

Author: Steven Pinker

Publisher: S. Fischer Verlag

ISBN: 310401616X

Category: History

Page: 1216

View: 3461

Die Geschichte der Menschheit – eine ewige Abfolge von Krieg, Genozid, Mord, Folter und Vergewaltigung. Und es wird immer schlimmer. Aber ist das richtig? In einem wahren Opus Magnum, einer groß angelegten Gesamtgeschichte unserer Zivilisation, untersucht der weltbekannte Evolutionspsychologe Steven Pinker die Entwicklung der Gewalt von der Urzeit bis heute und in allen ihren individuellen und kollektiven Formen, vom Verprügeln der Ehefrau bis zum geplanten Völkermord. Unter Rückgriff auf eine Fülle von wissenschaftlichen Belegen aus den unterschiedlichsten Disziplinen beweist er zunächst, dass die Gewalt im Laufe der Geschichte stetig abgenommen hat und wir heute in der friedlichsten Epoche der Menschheit leben. Diese verblüffende Tatsache verlangt nach einer Erklärung: Pinker schält in seiner Analyse sechs Entwicklungen heraus, die diesen Trend begünstigt haben, untersucht die Psychologie der Gewalt auf fünf innere Dämonen, die Gewaltausübung begünstigen, benennt vier Eigenschaften des Menschen, die den inneren Dämonen entgegenarbeiten und isoliert schließlich fünf historische Kräfte, die uns heute in der friedlichsten Zeit seit jeher leben lassen. Pinkers Darstellung revolutioniert den Blick auf die Welt und uns Menschen. Und sie macht Hoffnung und Mut. »Pinkers Studie ist eine leidenschaftliche Antithese zum verbreiteten Kulturpessimismus und dem Gefühl des moralischen Untergangs der Moderne.« Der Spiegel »Steven Pinker ist ein Top-Autor und verdient all die Superlative, mit denen man ihn überhäuft« New York Times» Die Argumente von Steven Pinker haben Gewicht [...]. Die Chance, heute Opfer von Gewalt zu werden, ist viel geringer als zu jeder anderen Zeit. Das ist eine spannende Nachricht, die konträr zur öffentlichen Wahrnehmung ist." Deutschlandfunk »Steven Pinker ist ein intellektueller Rockstar« The Guardian »Der Evolutionspsychologe Steven Pinker gilt als wichtigster Intellektueller« Süddeutsche Zeitung »Verflucht überzeugend« Hamburger Abendblatt

Classical Fourier Analysis

Author: Loukas Grafakos

Publisher: Springer

ISBN: 1493911945

Category: Mathematics

Page: 638

View: 2232

The main goal of this text is to present the theoretical foundation of the field of Fourier analysis on Euclidean spaces. It covers classical topics such as interpolation, Fourier series, the Fourier transform, maximal functions, singular integrals, and Littlewood–Paley theory. The primary readership is intended to be graduate students in mathematics with the prerequisite including satisfactory completion of courses in real and complex variables. The coverage of topics and exposition style are designed to leave no gaps in understanding and stimulate further study. This third edition includes new Sections 3.5, 4.4, 4.5 as well as a new chapter on “Weighted Inequalities,” which has been moved from GTM 250, 2nd Edition. Appendices I and B.9 are also new to this edition. Countless corrections and improvements have been made to the material from the second edition. Additions and improvements include: more examples and applications, new and more relevant hints for the existing exercises, new exercises, and improved references.

Find eBook