Search Results: applications-of-contact-geometry-and-topology-in-physics

Applications of Contact Geometry and Topology in Physics

Author: Arkady Leonidovich Kholodenko

Publisher: World Scientific

ISBN: 9814412090

Category: Mathematics

Page: 492

View: 2299

Although contact geometry and topology is briefly discussed in V I Arnol''d''s book Mathematical Methods of Classical Mechanics (Springer-Verlag, 1989, 2nd edition), it still remains a domain of research in pure mathematics, e.g. see the recent monograph by H Geiges An Introduction to Contact Topology (Cambridge U Press, 2008). Some attempts to use contact geometry in physics were made in the monograph Contact Geometry and Nonlinear Differential Equations (Cambridge U Press, 2007). Unfortunately, even the excellent style of this monograph is not sufficient to attract the attention of the physics community to this type of problems. This book is the first serious attempt to change the existing status quo. In it we demonstrate that, in fact, all branches of theoretical physics can be rewritten in the language of contact geometry and topology: from mechanics, thermodynamics and electrodynamics to optics, gauge fields and gravity; from physics of liquid crystals to quantum mechanics and quantum computers, etc. The book is written in the style of famous Landau-Lifshitz (L-L) multivolume course in theoretical physics. This means that its readers are expected to have solid background in theoretical physics (at least at the level of the L-L course). No prior knowledge of specialized mathematics is required. All needed new mathematics is given in the context of discussed physical problems. As in the L-L course some problems/exercises are formulated along the way and, again as in the L-L course, these are always supplemented by either solutions or by hints (with exact references). Unlike the L-L course, though, some definitions, theorems, and remarks are also presented. This is done with the purpose of stimulating the interest of our readers in deeper study of subject matters discussed in the text.

Geometry, Topology and Physics, Second Edition

Author: Mikio Nakahara

Publisher: CRC Press

ISBN: 9780750306065

Category: Mathematics

Page: 596

View: 7229

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.

Topology and Geometry for Physicists

Author: Charles Nash,Siddhartha Sen

Publisher: Courier Corporation

ISBN: 0486318362

Category: Mathematics

Page: 320

View: 515

Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. "Thoroughly recommended" by The Physics Bulletin, this volume's physics applications range from condensed matter physics and statistical mechanics to elementary particle theory. Its main mathematical topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory.

New Scientific Applications of Geometry and Topology

Author: De Witt L. Sumners,Nicholas R. Cozzarelli

Publisher: American Mathematical Soc.

ISBN: 9780821855027

Category: Mathematics

Page: 250

View: 4786

Geometry and topology are subjects generally considered to be 'pure' mathematics. Recently, however, some of the methods and results in these two areas have found new utility in both wet-lab science (biology and chemistry) and theoretical physics. Conversely, science is influencing mathematics, from posing questions that call for the construction of mathematical models to exporting theoretical methods of attack on long-standing problems of mathematical interest. Based on an AMS Short Course held in January 1992, this book contains six introductory articles on these intriguing new connections. There are articles by a chemist and a biologist about mathematics, and four articles by mathematicians writing about science.All are expository and require no specific knowledge of the science and mathematics involved. Because this book communicates the excitement and utility of mathematics research at an elementary level, it is an excellent textbook in an advanced undergraduate mathematics course.

Topology and Geometry for Physics

Author: Helmut Eschrig

Publisher: Springer

ISBN: 3642147003

Category: Science

Page: 390

View: 1063

A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation.

An Introduction to Contact Topology

Author: Hansjörg Geiges

Publisher: Cambridge University Press

ISBN: 1139467956

Category: Mathematics

Page: N.A

View: 9370

This text on contact topology is a comprehensive introduction to the subject, including recent striking applications in geometric and differential topology: Eliashberg's proof of Cerf's theorem via the classification of tight contact structures on the 3-sphere, and the Kronheimer-Mrowka proof of property P for knots via symplectic fillings of contact 3-manifolds. Starting with the basic differential topology of contact manifolds, all aspects of 3-dimensional contact manifolds are treated in this book. One notable feature is a detailed exposition of Eliashberg's classification of overtwisted contact structures. Later chapters also deal with higher-dimensional contact topology. Here the focus is on contact surgery, but other constructions of contact manifolds are described, such as open books or fibre connected sums. This book serves both as a self-contained introduction to the subject for advanced graduate students and as a reference for researchers.

Contact Geometry and Nonlinear Differential Equations

Author: Alexei Kushner,Valentin Lychagin,Vladimir Rubtsov

Publisher: Cambridge University Press

ISBN: 0521824761

Category: Mathematics

Page: 496

View: 5479

Shows novel and modern ways of solving differential equations using methods from contact and symplectic geometry.

Geometrical Methods of Mathematical Physics

Author: Bernard F. Schutz

Publisher: Cambridge University Press

ISBN: 1107268141

Category: Science

Page: N.A

View: 7585

In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.

Differentiable Manifolds

A Theoretical Physics Approach

Author: Gerardo F. Torres del Castillo

Publisher: Springer Science & Business Media

ISBN: 9780817682712

Category: Mathematics

Page: 275

View: 346

This textbook delves into the theory behind differentiable manifolds while exploring various physics applications along the way. Included throughout the book are a collection of exercises of varying degrees of difficulty. Differentiable Manifolds is intended for graduate students and researchers interested in a theoretical physics approach to the subject. Prerequisites include multivariable calculus, linear algebra, and differential equations and a basic knowledge of analytical mechanics.

Geometric and Topological Methods for Quantum Field Theory

Author: Hernan Ocampo,Eddy Pariguan,Sylvie Paycha

Publisher: Cambridge University Press

ISBN: 113948673X

Category: Science

Page: N.A

View: 5513

Aimed at graduate students in physics and mathematics, this book provides an introduction to recent developments in several active topics at the interface between algebra, geometry, topology and quantum field theory. The first part of the book begins with an account of important results in geometric topology. It investigates the differential equation aspects of quantum cohomology, before moving on to noncommutative geometry. This is followed by a further exploration of quantum field theory and gauge theory, describing AdS/CFT correspondence, and the functional renormalization group approach to quantum gravity. The second part covers a wide spectrum of topics on the borderline of mathematics and physics, ranging from orbifolds to quantum indistinguishability and involving a manifold of mathematical tools borrowed from geometry, algebra and analysis. Each chapter presents introductory material before moving on to more advanced results. The chapters are self-contained and can be read independently of the rest.

Basic Elements of Differential Geometry and Topology

Author: S.P. Novikov,A.T. Fomenko

Publisher: Springer Science & Business Media

ISBN: 9401578958

Category: Mathematics

Page: 490

View: 2902

Differential Geometry and Mathematical Physics

Part II. Fibre Bundles, Topology and Gauge Fields

Author: Gerd Rudolph,Matthias Schmidt

Publisher: Springer

ISBN: 9402409599

Category: Science

Page: 830

View: 9748

The book is devoted to the study of the geometrical and topological structure of gauge theories. It consists of the following three building blocks:- Geometry and topology of fibre bundles,- Clifford algebras, spin structures and Dirac operators,- Gauge theory.Written in the style of a mathematical textbook, it combines a comprehensive presentation of the mathematical foundations with a discussion of a variety of advanced topics in gauge theory.The first building block includes a number of specific topics, like invariant connections, universal connections, H-structures and the Postnikov approximation of classifying spaces.Given the great importance of Dirac operators in gauge theory, a complete proof of the Atiyah-Singer Index Theorem is presented. The gauge theory part contains the study of Yang-Mills equations (including the theory of instantons and the classical stability analysis), the discussion of various models with matter fields (including magnetic monopoles, the Seiberg-Witten model and dimensional reduction) and the investigation of the structure of the gauge orbit space. The final chapter is devoted to elements of quantum gauge theory including the discussion of the Gribov problem, anomalies and the implementation of the non-generic gauge orbit strata in the framework of Hamiltonian lattice gauge theory.The book is addressed both to physicists and mathematicians. It is intended to be accessible to students starting from a graduate level.

The Geometry of Physics

An Introduction

Author: Theodore Frankel

Publisher: Cambridge University Press

ISBN: 1139505610

Category: Mathematics

Page: N.A

View: 9040

This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.

Curvature in Mathematics and Physics

Author: Shlomo Sternberg

Publisher: Courier Corporation

ISBN: 0486292711

Category: Mathematics

Page: 416

View: 7287

Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.

Riemann, Topology, and Physics

Author: Michael Monastyrsky

Publisher: Springer Science & Business Media

ISBN: 1489935142

Category: Mathematics

Page: 158

View: 5385

Soviet citizens can buy Monastyrsky's biography of Riemann for eleven kopeks. This translated edition will cost considerably more, but it is still good value for the money. And we get Monastyrsky's monograph on topological methods in the bargain. It was a good idea of Birkhiiuser Boston to publish the two translations in one volume. The economics of publishing in a capitalist country make it impossible for us to produce the small cheap paperback booklets, low in quality of paper and high in quality of scholarship, at which the Soviet publishing industry excels. Monastyrsky's two booklets are out standing examples of the genre. By putting them together, Birkhiiuser has enabled them to fit into the Western book-marketing system. The two booklets were written separately and each is complete in itself, but they complement each other beautifully. The Riemann biography is short and terse, like Riemann's own writings. It describes in few words and fewer equations the revolutionary ideas which Riemann brought into mathematics and physics a hundred and twenty years ago. The topological methods booklet describes how some of these same ideas, after lying dormant for a century, found new and fruitful applications in the physics of our own time.

Geometry and Physics

Author: Jürgen Jost

Publisher: Springer Science & Business Media

ISBN: 9783642005411

Category: Mathematics

Page: 217

View: 9300

"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.

Differential Geometry and Lie Groups for Physicists

Author: Marián Fecko

Publisher: Cambridge University Press

ISBN: 1139458035

Category: Science

Page: N.A

View: 7055

Differential geometry plays an increasingly important role in modern theoretical physics and applied mathematics. This textbook gives an introduction to geometrical topics useful in theoretical physics and applied mathematics, covering: manifolds, tensor fields, differential forms, connections, symplectic geometry, actions of Lie groups, bundles, spinors, and so on. Written in an informal style, the author places a strong emphasis on developing the understanding of the general theory through more than 1000 simple exercises, with complete solutions or detailed hints. The book will prepare readers for studying modern treatments of Lagrangian and Hamiltonian mechanics, electromagnetism, gauge fields, relativity and gravitation. Differential Geometry and Lie Groups for Physicists is well suited for courses in physics, mathematics and engineering for advanced undergraduate or graduate students, and can also be used for active self-study. The required mathematical background knowledge does not go beyond the level of standard introductory undergraduate mathematics courses.

Topology and Geometry in Physics

Author: Eike Bick,Frank Daniel Steffen

Publisher: Springer Science & Business Media

ISBN: 9783540231257

Category: Mathematics

Page: 358

View: 3808

Application of the concepts and methods of topology and geometry have led to a deeper understanding of many crucial aspects in condensed matter physics, cosmology, gravity and particle physics. This book can be considered an advanced textbook on modern applications and recent developments in these fields of physical research. Written as a set of largely self-contained extensive lectures, the book gives an introduction to topological concepts in gauge theories, BRST quantization, chiral anomalies, supersymmetric solitons and noncommutative geometry. It will be of benefit to postgraduate students, educating newcomers to the field and lecturers looking for advanced material.

Geometry, Topology, and Mathematical Physics

S.P. Novikov's Seminar, 2002-2003

Author: V. M. Buchstaber,I. M. Krichever

Publisher: American Mathematical Soc.

ISBN: 9780821836132

Category: Mathematics

Page: 324

View: 5515

This volume contains a selection of papers based on presentations given at the S. P. Novikov seminar held at the Steklov Mathematical Institute in Moscow. Topics and speakers were chosen by the well-known expert, S. P. Novikov, one of the leading mathematicians of the twentieth century. His diverse interests are the tradition of the seminar and are reflected in the topics presented in the book. The book begins with Novikov's paper analyzing the position of mathematics and theoretical physics at the beginning of the new millennium. Following is an interview with Novikov published in the Newsletter of the European Mathematical Society presenting the genesis of many of his ideas and his scientific school. The remaining articles address topics in geometry, topology, and mathematical physics. The volume is suitable for graduate students and researchers interested in the corresponding areas of mathematics and physics.

Differential Geometry and Topology

With a View to Dynamical Systems

Author: Keith Burns,Marian Gidea

Publisher: CRC Press

ISBN: 9781584882534

Category: Mathematics

Page: 400

View: 9161

Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

Find eBook