Search Results: categories-bundles-and-spacetime-topology-mathematics-and-its-applications

Categories, Bundles and Spacetime Topology

Author: C.T. Dodson

Publisher: Springer Science & Business Media

ISBN: 9401577765

Category: Mathematics

Page: 243

View: 987

Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown'The point of a Pin'. van Gulik's TheChinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging SUbdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.

Introduction to Geometry of Manifolds with Symmetry

Author: V.V. Trofimov

Publisher: Springer Science & Business Media

ISBN: 9401719616

Category: Mathematics

Page: 328

View: 4724

One ofthe most important features of the development of physical and mathematical sciences in the beginning of the 20th century was the demolition of prevailing views of the three-dimensional Euclidean space as the only possible mathematical description of real physical space. Apriorization of geometrical notions and identification of physical 3 space with its mathematical modellR were characteristic for these views. The discovery of non-Euclidean geometries led mathematicians to the understanding that Euclidean geometry is nothing more than one of many logically admissible geometrical systems. Relativity theory amended our understanding of the problem of space by amalgamating space and time into an integral four-dimensional manifold. One of the most important problems, lying at the crossroad of natural sciences and philosophy is the problem of the structure of the world as a whole. There are a lot of possibilities for the topology offour dimensional space-time, and at first sight a lot of possibilities arise in cosmology. In principle, not only can the global topology of the universe be complicated, but also smaller scale topological structures can be very nontrivial. One can imagine two "usual" spaces connected with a "throat", making the topology of the union complicated.

Topological Fixed Point Theory of Multivalued Mappings

Author: Lech Górniewicz

Publisher: Springer Science & Business Media

ISBN: 9780792360018

Category: Mathematics

Page: 399

View: 5515

This volume presents a broad introduction to the topological fixed point theory of multivalued (set-valued) mappings, treating both classical concepts as well as modern techniques. A variety of up-to-date results is described within a unified framework. Topics covered include the basic theory of set-valued mappings with both convex and nonconvex values, approximation and homological methods in the fixed point theory together with a thorough discussion of various index theories for mappings with a topologically complex structure of values, applications to many fields of mathematics, mathematical economics and related subjects, and the fixed point approach to the theory of ordinary differential inclusions. The work emphasises the topological aspect of the theory, and gives special attention to the Lefschetz and Nielsen fixed point theory for acyclic valued mappings with diverse compactness assumptions via graph approximation and the homological approach. Audience: This work will be of interest to researchers and graduate students working in the area of fixed point theory, topology, nonlinear functional analysis, differential inclusions, and applications such as game theory and mathematical economics.

Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications

Author: Krishan L. Duggal,Aurel Bejancu

Publisher: Springer Science & Business Media

ISBN: 9401720894

Category: Mathematics

Page: 303

View: 4462

This book is about the light like (degenerate) geometry of submanifolds needed to fill a gap in the general theory of submanifolds. The growing importance of light like hypersurfaces in mathematical physics, in particular their extensive use in relativity, and very limited information available on the general theory of lightlike submanifolds, motivated the present authors, in 1990, to do collaborative research on the subject matter of this book. Based on a series of author's papers (Bejancu [3], Bejancu-Duggal [1,3], Dug gal [13], Duggal-Bejancu [1,2,3]) and several other researchers, this volume was conceived and developed during the Fall '91 and Fall '94 visits of Bejancu to the University of Windsor, Canada. The primary difference between the lightlike submanifold and that of its non degenerate counterpart arises due to the fact that in the first case, the normal vector bundle intersects with the tangent bundle of the submanifold. Thus, one fails to use, in the usual way, the theory of non-degenerate submanifolds (cf. Chen [1]) to define the induced geometric objects (such as linear connection, second fundamental form, Gauss and Weingarten equations) on the light like submanifold. Some work is known on null hypersurfaces and degenerate submanifolds (see an up-to-date list of references on pages 138 and 140 respectively). Our approach, in this book, has the following outstanding features: (a) It is the first-ever attempt of an up-to-date information on null curves, lightlike hypersur faces and submanifolds, consistent with the theory of non-degenerate submanifolds.

Geometry of Lie Groups

Author: B. Rosenfeld,Bill Wiebe

Publisher: Springer Science & Business Media

ISBN: 147575325X

Category: Mathematics

Page: 398

View: 6223

This book is the result of many years of research in Non-Euclidean Geometries and Geometry of Lie groups, as well as teaching at Moscow State University (1947- 1949), Azerbaijan State University (Baku) (1950-1955), Kolomna Pedagogical Col lege (1955-1970), Moscow Pedagogical University (1971-1990), and Pennsylvania State University (1990-1995). My first books on Non-Euclidean Geometries and Geometry of Lie groups were written in Russian and published in Moscow: Non-Euclidean Geometries (1955) [Ro1] , Multidimensional Spaces (1966) [Ro2] , and Non-Euclidean Spaces (1969) [Ro3]. In [Ro1] I considered non-Euclidean geometries in the broad sense, as geometry of simple Lie groups, since classical non-Euclidean geometries, hyperbolic and elliptic, are geometries of simple Lie groups of classes Bn and D , and geometries of complex n and quaternionic Hermitian elliptic and hyperbolic spaces are geometries of simple Lie groups of classes An and en. [Ro1] contains an exposition of the geometry of classical real non-Euclidean spaces and their interpretations as hyperspheres with identified antipodal points in Euclidean or pseudo-Euclidean spaces, and in projective and conformal spaces. Numerous interpretations of various spaces different from our usual space allow us, like stereoscopic vision, to see many traits of these spaces absent in the usual space.

A Study of Braids

Author: Kunio Murasugi,B. Kurpita

Publisher: Springer Science & Business Media

ISBN: 9780792357674

Category: Computers

Page: 272

View: 7643

This book provides a comprehensive exposition of the theory of braids, beginning with the basic mathematical definitions and structures. Among the many topics explained in detail are: the braid group for various surfaces; the solution of the word problem for the braid group; braids in the context of knots and links (Alexander's theorem); Markov's theorem and its use in obtaining braid invariants; the connection between the Platonic solids (regular polyhedra) and braids; the use of braids in the solution of algebraic equations. Dirac's problem and special types of braids termed Mexican plaits are also discussed. Audience: Since the book relies on concepts and techniques from algebra and topology, the authors also provide a couple of appendices that cover the necessary material from these two branches of mathematics. Hence, the book is accessible not only to mathematicians but also to anybody who might have an interest in the theory of braids. In particular, as more and more applications of braid theory are found outside the realm of mathematics, this book is ideal for any physicist, chemist or biologist who would like to understand the mathematics of braids. With its use of numerous figures to explain clearly the mathematics, and exercises to solidify the understanding, this book may also be used as a textbook for a course on knots and braids, or as a supplementary textbook for a course on topology or algebra.

Tensor Geometry

The Geometric Viewpoint and its Uses

Author: Christopher T. J. Dodson,Timothy Poston

Publisher: Springer Science & Business Media

ISBN: 3642105149

Category: Mathematics

Page: 434

View: 9259

This treatment of differential geometry and the mathematics required for general relativity makes the subject accessible, for the first time, to anyone familiar with elementary calculus in one variable and with some knowledge of vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as the book form will allow.

The Topology of Fibre Bundles. (PMS-14)

Author: Norman Steenrod

Publisher: Princeton University Press

ISBN: 1400883873

Category: Mathematics

Page: 224

View: 8884

Fibre bundles, now an integral part of differential geometry, are also of great importance in modern physics--such as in gauge theory. This book, a succinct introduction to the subject by renown mathematician Norman Steenrod, was the first to present the subject systematically. It begins with a general introduction to bundles, including such topics as differentiable manifolds and covering spaces. The author then provides brief surveys of advanced topics, such as homotopy theory and cohomology theory, before using them to study further properties of fibre bundles. The result is a classic and timeless work of great utility that will appeal to serious mathematicians and theoretical physicists alike.

Physics, Geometry and Topology

Author: H.C. Lee

Publisher: Springer Science & Business Media

ISBN: 1461538025

Category: Science

Page: 681

View: 8394

The Banff NATO Summer School was held August 14-25, 1989 at the Banff Cen tre, Banff, Albert, Canada. It was a combination of two venues: a summer school in the annual series of Summer School in Theoretical Physics spon sored by the Theoretical Physics Division, Canadian Association of Physi cists, and a NATO Advanced Study Institute. The Organizing Committee for the present school was composed of G. Kunstatter (University of Winnipeg), H.C. Lee (Chalk River Laboratories and University of Western Ontario), R. Kobes (University of Winnipeg), D.l. Toms (University of Newcastle Upon Tyne) and Y.S. Wu (University of Utah). Thanks to the group of lecturers (see Contents) and the timeliness of the courses given, the school, entitled PHYSICS, GEOMETRY AND TOPOLOGY, was popular from the very outset. The number of applications outstripped the 90 places of accommodation reserved at the Banff Centre soon after the school was announced. As the eventual total number of participants was increased to 170, it was still necessary to tum away many deserving applicants. In accordance with the spirit of the school, the geometrical and topologi cal properties in each of the wide ranging topics covered by the lectures were emphasized. A recurring theme in a number of the lectures is the Yang-Baxter relation which characterizes a very large class of integrable systems including: many state models, two-dimensional conformal field theory, quantum field theory and quantum gravity in 2 + I dimensions.

Studia Scientiarum Mathematicarum Hungarica

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 4833

Differential Topology and Quantum Field Theory

Author: Charles Nash

Publisher: Elsevier

ISBN: 9780125140768

Category: Mathematics

Page: 386

View: 4460

The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool

Exotic Smoothness and Physics

Differential Topology and Spacetime Models

Author: Torsten Asselmeyer-Maluga,Carl Henry Brans

Publisher: World Scientific

ISBN: 981024195X

Category: Science

Page: 322

View: 7586

Many Christians have an easier time being saved by grace than they do living in grace every day. But grace is at the center of the life God calls us to--and reflects the heart of the One who calls.These studies in Grace will help you make the connection between grace as a remote biblical concept and grace as a lifestyle--a reality you experience day in, day out. Through an unfolding study of Psalm 23, you'll learn how God--our Good Shepherd--is for you, how he longs to walk with you through temptation, sorrow, and even deep regret. You'll discover God's desire to make his joy your joy. Throughout, you'll learn how enduring, powerful, and life-affirming God's work in your life can be---and rediscover why it's called amazing grace.Leader's guide included!Grace group sessions are:Living in GraceGrace for RegretsSustaining GraceDelighting in GraceA Legacy of GraceGrace ForeverGrace to Share

Differential geometry and its applications

Author: János Szenthe,L. Tamássy,Bolyai János Matematikai Társulat

Publisher: North Holland

ISBN: N.A

Category: Mathematics

Page: 727

View: 7102

Reviews in Global Analysis, 1980-86 as Printed in Mathematical Reviews

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 3920

View: 6836

Mathematical Reviews

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 4924

The Mathematical Intelligencer

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 2075

Applications of Lie Algebras to Hyperbolic and Stochastic Differential Equations

Author: Constantin Vârsan

Publisher: Kluwer Academic Pub

ISBN: 9780792357186

Category: Mathematics

Page: 238

View: 1477

This book deals mainly with the relevance of integral manifolds associated with a Lie algebra with singularities for studying systems of first order partial differential equations, stochastic differential equations and nonlinear control systems. The analysis is based on the algebraic representation of gradient systems in a Lie algebra, allowing the recovery of the original vector fields and the associated Lie algebra as well. Special attention is paid to nonlinear control systems encompassing specific problems of this theory and their significance for stochastic differential equations. The work is written in a self-contained manner, presupposing only some basic knowledge of algebra, geometry and differential equations. Audience: This volume will be of interest to mathematicians and engineers working in the field of applied geometric and algebraic methods in differential equations. It can also be recommended as a supplementary text for postgraduate students.

The structure of classical diffeomorphism groups

Author: Augustin Banyaga

Publisher: Kluwer Academic Pub

ISBN: N.A

Category: Mathematics

Page: 197

View: 9891

The book introduces and explains most of the main techniques and ideas in the study of the structure of diffeomorphism groups. A quite complete proof of Thurston's theorem on the simplicity of some diffeomorphism groups is given. The method of the proof is generalized to symplectic and volume-preserving diffeomorphisms. The Mather-Thurston theory relating foliations with diffeomorphism groups is outlined. A central role is played by the flux homomorphism. Various cohomology classes connected with the flux are defined on the group of diffeomorphisms. The main results on the structure of diffeomorphism groups are applied to showing that classical structures are determined by their automorphism groups, a contribution to the Erlanger Program of Klein. Audience: Graduate students and researchers in mathematics and physics.

Operations research and discrete analysis

Author: Alekseĭ D. Korshunov

Publisher: Kluwer Academic Pub

ISBN: N.A

Category: Business & Economics

Page: 331

View: 6065

The contributions to this volume have all been translated from the second volume of the Russian journal Discrete Analysis and Operation Research, published at the Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia. The papers collected here give an excellent overview of recent Russian research in topics such as analysis of algorithms, combinatorics, coding theory, graphs, lower bounds for complexity of Boolean functions and scheduling theory, and can be seen as an update of the book Discrete Analysis and Operational Research, published by Kluwer in 1996.

Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds

Classical and Quantum Aspects

Author: A.K. Prykarpatsky,I.V. Mykytiuk

Publisher: Springer

ISBN: 9780792350903

Category: Science

Page: 559

View: 7589

In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled through three stages: 1) finding a symplectic structure (Poisson bracket) transforming an original dynamical system into a Hamiltonian form; 2) finding first integrals (action variables or conservation laws); 3) defining an additional set of variables and some functional operator quantities with completely controlled evolutions (for instance, as Lax type representation).

Find eBook