Search Results: data-mining-practical-machine-learning-tools-and-techniques-third-edition-morgan-kaufmann-series-in-data-management-systems

Data Mining

Practical Machine Learning Tools and Techniques

Author: Ian H. Witten,Eibe Frank,Mark A. Hall,Christopher J. Pal

Publisher: Morgan Kaufmann

ISBN: 0128043571

Category: Computers

Page: 654

View: 7240

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches. Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research. Please visit the book companion website at http://www.cs.waikato.ac.nz/ml/weka/book.html It contains Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc. Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface Includes open-access online courses that introduce practical applications of the material in the book

Data Mining: Practical Machine Learning Tools and Techniques

Author: Ian H. Witten,Eibe Frank,Mark A. Hall

Publisher: Elsevier

ISBN: 0080890369

Category: Computers

Page: 664

View: 4176

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Data Mining

Practical Machine Learning Tools and Techniques, Second Edition

Author: Ian H. Witten,Eibe Frank

Publisher: Elsevier

ISBN: 9780080477022

Category: Computers

Page: 560

View: 5745

Data Mining, Second Edition, describes data mining techniques and shows how they work. The book is a major revision of the first edition that appeared in 1999. While the basic core remains the same, it has been updated to reflect the changes that have taken place over five years, and now has nearly double the references. The highlights of this new edition include thirty new technique sections; an enhanced Weka machine learning workbench, which now features an interactive interface; comprehensive information on neural networks; a new section on Bayesian networks; and much more. This text is designed for information systems practitioners, programmers, consultants, developers, information technology managers, specification writers as well as professors and students of graduate-level data mining and machine learning courses. Algorithmic methods at the heart of successful data mining—including tried and true techniques as well as leading edge methods Performance improvement techniques that work by transforming the input or output

Data Mining: Concepts and Techniques

Author: Jiawei Han,Jian Pei,Micheline Kamber

Publisher: Elsevier

ISBN: 9780123814807

Category: Computers

Page: 744

View: 9703

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Preparation for Data Mining

Author: Dorian Pyle

Publisher: Morgan Kaufmann

ISBN: 9781558605299

Category: Computers

Page: 540

View: 4849

A guide to the importance of well-structured data as the first step to successful data mining. It shows how data should be prepared prior to mining in order to maximize mining performance, and provides examples of how to apply a variety of techniques in order to solve real world business problems.

Predictive Data Mining

A Practical Guide

Author: Sholom M. Weiss,Nitin Indurkhya

Publisher: Morgan Kaufmann

ISBN: 9781558604032

Category: Computers

Page: 228

View: 3785

This book presents a unified view of data mining, drawing from statistics, machine learning, and databases and focuses on the preparation of data and the development of an overall problem-solving strategy. It will interest researchers, programmers, and developers in knowledge discovery and data mining in the disciplines of AI, software engineering, and databases.

Data Mining and Analysis

Fundamental Concepts and Algorithms

Author: Mohammed J. Zaki,Wagner Meira, Jr

Publisher: Cambridge University Press

ISBN: 0521766338

Category: Computers

Page: 562

View: 7267

A comprehensive overview of data mining from an algorithmic perspective, integrating related concepts from machine learning and statistics.

Exploratory Data Mining and Data Cleaning

Author: Tamraparni Dasu,Theodore Johnson

Publisher: John Wiley & Sons

ISBN: 0471458643

Category: Mathematics

Page: 203

View: 6024

Written for practitioners of data mining, data cleaning and database management. Presents a technical treatment of data quality including process, metrics, tools and algorithms. Focuses on developing an evolving modeling strategy through an iterative data exploration loop and incorporation of domain knowledge. Addresses methods of detecting, quantifying and correcting data quality issues that can have a significant impact on findings and decisions, using commercially available tools as well as new algorithmic approaches. Uses case studies to illustrate applications in real life scenarios. Highlights new approaches and methodologies, such as the DataSphere space partitioning and summary based analysis techniques. Exploratory Data Mining and Data Cleaning will serve as an important reference for serious data analysts who need to analyze large amounts of unfamiliar data, managers of operations databases, and students in undergraduate or graduate level courses dealing with large scale data analys is and data mining.

Business Modeling and Data Mining

Author: Dorian Pyle

Publisher: Elsevier

ISBN: 9780080500454

Category: Computers

Page: 650

View: 8662

Business Modeling and Data Mining demonstrates how real world business problems can be formulated so that data mining can answer them. The concepts and techniques presented in this book are the essential building blocks in understanding what models are and how they can be used practically to reveal hidden assumptions and needs, determine problems, discover data, determine costs, and explore the whole domain of the problem. This book articulately explains how to understand both the strategic and tactical aspects of any business problem, identify where the key leverage points are and determine where quantitative techniques of analysis -- such as data mining -- can yield most benefit. It addresses techniques for discovering how to turn colloquial expression and vague descriptions of a business problem first into qualitative models and then into well-defined quantitative models (using data mining) that can then be used to find a solution. The book completes the process by illustrating how these findings from data mining can be turned into strategic or tactical implementations. · Teaches how to discover, construct and refine models that are useful in business situations · Teaches how to design, discover and develop the data necessary for mining · Provides a practical approach to mining data for all business situations · Provides a comprehensive, easy-to-use, fully interactive methodology for building models and mining data · Provides pointers to supplemental online resources, including a downloadable version of the methodology and software tools.

Data Preparation for Data Mining Using SAS

Author: Mamdouh Refaat

Publisher: Elsevier

ISBN: 9780080491004

Category: Computers

Page: 424

View: 843

Are you a data mining analyst, who spends up to 80% of your time assuring data quality, then preparing that data for developing and deploying predictive models? And do you find lots of literature on data mining theory and concepts, but when it comes to practical advice on developing good mining views find little “how to information? And are you, like most analysts, preparing the data in SAS? This book is intended to fill this gap as your source of practical recipes. It introduces a framework for the process of data preparation for data mining, and presents the detailed implementation of each step in SAS. In addition, business applications of data mining modeling require you to deal with a large number of variables, typically hundreds if not thousands. Therefore, the book devotes several chapters to the methods of data transformation and variable selection. A complete framework for the data preparation process, including implementation details for each step. The complete SAS implementation code, which is readily usable by professional analysts and data miners. A unique and comprehensive approach for the treatment of missing values, optimal binning, and cardinality reduction. Assumes minimal proficiency in SAS and includes a quick-start chapter on writing SAS macros.

Instant Weka How-to

Author: Boštjan Kaluža

Publisher: Packt Publishing Ltd

ISBN: 1782163875

Category: Computers

Page: 80

View: 7216

Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A practical guide with examples and applications of programming Weka in Java.This book primarily targets Java developers who want to build Weka's data mining capabilities into their projects. Computer science students, data scientists, artificial intelligence programmers, and statistical programmers would equally gain from this book and would learn about essential tasks required to implement a project. Experience with Weka concepts is assumed.

Data Mining Techniques

For Marketing, Sales, and Customer Relationship Management

Author: Gordon S. Linoff,Michael J. A. Berry

Publisher: John Wiley & Sons

ISBN: 9781118087459

Category: Computers

Page: 888

View: 5962

The leading introductory book on data mining, fully updated and revised! When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new edition—more than 50% new and revised— is a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company. Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problems Covers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediately Touches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and more Provides best practices for performing data mining using simple tools such as Excel Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.

Mining the Web

Discovering Knowledge from Hypertext Data

Author: Soumen Chakrabarti

Publisher: Morgan Kaufmann

ISBN: 9781558607545

Category: Computers

Page: 345

View: 4575

The definitive book on mining the Web from the preeminent authority.

Encyclopedia of Information Science and Technology, Third Edition

Author: Khosrow-Pour, Mehdi

Publisher: IGI Global

ISBN: 1466658894

Category: Computers

Page: 10384

View: 3736

"This 10-volume compilation of authoritative, research-based articles contributed by thousands of researchers and experts from all over the world emphasized modern issues and the presentation of potential opportunities, prospective solutions, and future directions in the field of information science and technology"--Provided by publisher.

Artificial Intelligence: Concepts, Methodologies, Tools, and Applications

Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

ISBN: 152251760X

Category: Computers

Page: 3048

View: 4596

Ongoing advancements in modern technology have led to significant developments in artificial intelligence. With the numerous applications available, it becomes imperative to conduct research and make further progress in this field. Artificial Intelligence: Concepts, Methodologies, Tools, and Applications provides a comprehensive overview of the latest breakthroughs and recent progress in artificial intelligence. Highlighting relevant technologies, uses, and techniques across various industries and settings, this publication is a pivotal reference source for researchers, professionals, academics, upper-level students, and practitioners interested in emerging perspectives in the field of artificial intelligence.

Modern Computational Models of Semantic Discovery in Natural Language

Author: Žižka, Jan

Publisher: IGI Global

ISBN: 146668691X

Category: Computers

Page: 335

View: 4685

Language—that is, oral or written content that references abstract concepts in subtle ways—is what sets us apart as a species, and in an age defined by such content, language has become both the fuel and the currency of our modern information society. This has posed a vexing new challenge for linguists and engineers working in the field of language-processing: how do we parse and process not just language itself, but language in vast, overwhelming quantities? Modern Computational Models of Semantic Discovery in Natural Language compiles and reviews the most prominent linguistic theories into a single source that serves as an essential reference for future solutions to one of the most important challenges of our age. This comprehensive publication benefits an audience of students and professionals, researchers, and practitioners of linguistics and language discovery. This book includes a comprehensive range of topics and chapters covering digital media, social interaction in online environments, text and data mining, language processing and translation, and contextual documentation, among others.

Introduction to Statistical Machine Learning

Author: Masashi Sugiyama

Publisher: Morgan Kaufmann

ISBN: 0128023503

Category: Computers

Page: 534

View: 5058

Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus. Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning. Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials.

Java Data Mining: Strategy, Standard, and Practice

A Practical Guide for Architecture, Design, and Implementation

Author: Mark F. Hornick,Erik Marcadé,Sunil Venkayala

Publisher: Elsevier

ISBN: 9780080495910

Category: Computers

Page: 544

View: 622

Whether you are a software developer, systems architect, data analyst, or business analyst, if you want to take advantage of data mining in the development of advanced analytic applications, Java Data Mining, JDM, the new standard now implemented in core DBMS and data mining/analysis software, is a key solution component. This book is the essential guide to the usage of the JDM standard interface, written by contributors to the JDM standard. Data mining introduction - an overview of data mining and the problems it can address across industries; JDM's place in strategic solutions to data mining-related problems JDM essentials - concepts, design approach and design issues, with detailed code examples in Java; a Web Services interface to enable JDM functionality in an SOA environment; and illustration of JDM XML Schema for JDM objects JDM in practice - the use of JDM from vendor implementations and approaches to customer applications, integration, and usage; impact of data mining on IT infrastructure; a how-to guide for building applications that use the JDM API Free, downloadable KJDM source code referenced in the book available here

Managing Gigabytes

Compressing and Indexing Documents and Images

Author: Ian H. Witten,Alistair Moffat,Timothy C. Bell

Publisher: Morgan Kaufmann

ISBN: 9781558605701

Category: Business & Economics

Page: 519

View: 1850

In this fully updated second edition of the highly acclaimed Managing Gigabytes, authors Witten, Moffat, and Bell continue to provide unparalleled coverage of state-of-the-art techniques for compressing and indexing data. Whatever your field, if you work with large quantities of information, this book is essential reading--an authoritative theoretical resource and a practical guide to meeting the toughest storage and access challenges. It covers the latest developments in compression and indexing and their application on the Web and in digital libraries. It also details dozens of powerful techniques supported by mg, the authors' own system for compressing, storing, and retrieving text, images, and textual images. mg's source code is freely available on the Web. * Up-to-date coverage of new text compression algorithms such as block sorting, approximate arithmetic coding, and fat Huffman coding * New sections on content-based index compression and distributed querying, with 2 new data structures for fast indexing * New coverage of image coding, including descriptions of de facto standards in use on the Web (GIF and PNG), information on CALIC, the new proposed JPEG Lossless standard, and JBIG2 * New information on the Internet and WWW, digital libraries, web search engines, and agent-based retrieval * Accompanied by a public domain system called MG which is a fully worked-out operational example of the advanced techniques developed and explained in the book * New appendix on an existing digital library system that uses the MG software

Predictive Analytics and Data Mining

Concepts and Practice with RapidMiner

Author: Vijay Kotu,Bala Deshpande

Publisher: Morgan Kaufmann

ISBN: 0128016507

Category: Computers

Page: 446

View: 3430

Put Predictive Analytics into Action Learn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining. You’ll be able to: 1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process. 2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases. 3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Find eBook