This is the second edition of the standard text on design theory. Exercises are included throughout, and the book concludes with an extensive and updated bibliography of well over 1800 items.

Discusses mathematics related to partitions of numbers into sums of positive integers.

The theory of matroids is unique in the extent to which it connects such disparate branches of combinatorial theory and algebra as graph theory, lattice theory, design theory, combinatorial optimization, linear algebra, group theory, ring theory and field theory. Furthermore, matroid theory is alone among mathematical theories because of the number and variety of its equivalent axiom systems. Indeed, matroids are amazingly versatile and the approaches to the subject are varied and numerous. This book is a primer in the basic axioms and constructions of matroids. The contributions by various leaders in the field include chapters on axiom systems, lattices, basis exchange properties, orthogonality, graphs and networks, constructions, maps, semi-modular functions and an appendix on cryptomorphisms. The authors have concentrated on giving a lucid exposition of the individual topics; explanations of theorems are preferred to complete proofs and original work is thoroughly referenced. In addition, exercises are included for each topic.

This excellent 1981 treatment of the mathematical theory of entropy gives an accessible exposition its application to other fields.

A modern, comprehensive 2010 overview providing an easy introduction for applied scientists who are not versed in mathematics.

This book is devoted entirely to the theory of finite fields.

This book provides a self-contained comprehensive exposition of the theory of dynamical systems. The book begins with a discussion of several elementary but crucial examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate and up.

This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

This 2001 book will appeal to mathematicians and philosophers interested in the foundations of mathematics.

The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.

This series is devoted to significant topics or themes that have wide application in mathematics or mathematical science and for which a detailed development of the abstract theory is less important than a thorough and concrete exploration of the implications and applications. Books in the Encyclopedia of Mathematics and its Applications cover their subjects comprehensively. Less important results may be summarised as exercises at the ends of chapters, For technicalities, readers can be referred to the bibliography, which is expected to be comprehensive. As a result, volumes are encyclopedic references or manageable guides to major subjects.

This volume, the third in a sequence that began with The Theory of Matroids and Combinatorial Geometries, concentrates on the applications of matroid theory to a variety of topics from engineering (rigidity and scene analysis), combinatorics (graphs, lattices, codes and designs), topology and operations research (the greedy algorithm).

This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, and logic. It unifies the results of contemporary research on the paradox and presents several new results including some unusual paradoxes in hyperbolic space. It also provides up to date proofs and discusses many unsolved problems.

Discusses the deep connections between logic and complexity theory, and lists a number of intriguing open problems.

The second in a two-volume set, for researchers into finite groups, geometry and algebraic combinatorics.

Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.

An overview of special functions, focusing on the hypergeometric functions and the associated hypergeometric series.

Written by prominent experts in the field, this monograph provides the first comprehensive, unified presentation of the structural, algorithmic and applied aspects of the theory of Boolean functions. The book focuses on algebraic representations of Boolean functions, especially disjunctive and conjunctive normal form representations. This framework looks at the fundamental elements of the theory (Boolean equations and satisfiability problems, prime implicants and associated short representations, dualization), an in-depth study of special classes of Boolean functions (quadratic, Horn, shellable, regular, threshold, read-once functions and their characterization by functional equations) and two fruitful generalizations of the concept of Boolean functions (partially defined functions and pseudo-Boolean functions). Several topics are presented here in book form for the first time. Because of the depth and breadth and its emphasis on algorithms and applications, this monograph will have special appeal for researchers and graduate students in discrete mathematics, operations research, computer science, engineering and economics.

This series of Encyclopedia volumes attempts to present the factual body of all mathematics.