Search Results: differential-equations-and-their-applications-an-introduction-to-applied-mathematics-problem-books-in-mathematics

Differential Equations and Their Applications

An Introduction to Applied Mathematics

Author: M. Braun

Publisher: Springer Science & Business Media

ISBN: 1475749694

Category: Mathematics

Page: 719

View: 9173

For the past several years the Division of Applied Mathematics at Brown University has been teaching an extremely popular sophomore level differential equations course. The immense success of this course is due primarily to two fac tors. First, and foremost, the material is presented in a manner which is rigorous enough for our mathematics and ap plied mathematics majors, but yet intuitive and practical enough for our engineering, biology, economics, physics and geology majors. Secondly, numerous case histories are given of how researchers have used differential equations to solve real life problems. This book is the outgrowth of this course. It is a rigorous treatment of differential equations and their appli cations, and can be understood by anyone who has had a two semester course in Calculus. It contains all the material usually covered in a one or two semester course in differen tial equations. In addition, it possesses the following unique features which distinguish it from other textbooks on differential equations.

An Introduction to Differential Equations and Their Applications

Author: Stanley J. Farlow

Publisher: Courier Corporation

ISBN: 0486135136

Category: Mathematics

Page: 640

View: 1521

This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

Differentialgleichungen und ihre Anwendungen

Author: Martin Braun

Publisher: Springer-Verlag

ISBN: 3642975151

Category: Mathematics

Page: 598

View: 6803

Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#

An Introduction to Delay Differential Equations with Applications to the Life Sciences

Author: hal smith

Publisher: Springer Science & Business Media

ISBN: 9781441976468

Category: Mathematics

Page: 172

View: 1120

This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.

Differential Equations and Mathematical Biology, Second Edition

Author: D.S. Jones,Michael Plank,B.D. Sleeman

Publisher: CRC Press

ISBN: 9781420083583

Category: Mathematics

Page: 462

View: 5014

Deepen students’ understanding of biological phenomena Suitable for courses on differential equations with applications to mathematical biology or as an introduction to mathematical biology, Differential Equations and Mathematical Biology, Second Edition introduces students in the physical, mathematical, and biological sciences to fundamental modeling and analytical techniques used to understand biological phenomena. In this edition, many of the chapters have been expanded to include new and topical material. New to the Second Edition A section on spiral waves Recent developments in tumor biology More on the numerical solution of differential equations and numerical bifurcation analysis MATLAB® files available for download online Many additional examples and exercises This textbook shows how first-order ordinary differential equations (ODEs) are used to model the growth of a population, the administration of drugs, and the mechanism by which living cells divide. The authors present linear ODEs with constant coefficients, extend the theory to systems of equations, model biological phenomena, and offer solutions to first-order autonomous systems of nonlinear differential equations using the Poincaré phase plane. They also analyze the heartbeat, nerve impulse transmission, chemical reactions, and predator–prey problems. After covering partial differential equations and evolutionary equations, the book discusses diffusion processes, the theory of bifurcation, and chaotic behavior. It concludes with problems of tumor growth and the spread of infectious diseases.

Fractional Differential Equations

An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications

Author: Igor Podlubny

Publisher: Elsevier

ISBN: 9780080531984

Category: Mathematics

Page: 340

View: 6053

This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. A unique survey of many applications of fractional calculus Presents basic theory Includes a unified presentation of selected classical results, which are important for applications Provides many examples Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives

Ordinary Differential Equations

An Introduction to Nonlinear Analysis

Author: Herbert Amann

Publisher: Walter de Gruyter

ISBN: 3110853698

Category: Mathematics

Page: 467

View: 3182

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

An Introduction to Variational Inequalities and Their Applications

Author: David Kinderlehrer,Guido Stampacchia

Publisher: SIAM

ISBN: 0898714664

Category: Mathematics

Page: 313

View: 3130

Unabridged republication is a resource for topics in elliptic equations and systems and free boundary problems.

An Introduction to Ordinary Differential Equations

Author: Ravi P. Agarwal,Donal O'Regan

Publisher: Springer Science & Business Media

ISBN: 9780387712765

Category: Mathematics

Page: 322

View: 8594

Ordinary differential equations serve as mathematical models for many exciting real world problems. Rapid growth in the theory and applications of differential equations has resulted in a continued interest in their study by students in many disciplines. This textbook organizes material around theorems and proofs, comprising of 42 class-tested lectures that effectively convey the subject in easily manageable sections. The presentation is driven by detailed examples that illustrate how the subject works. Numerous exercise sets, with an "answers and hints" section, are included. The book further provides a background and history of the subject.

Introduction to Applied Mathematics for Environmental Science

Author: David F. Parkhurst

Publisher: Springer Science & Business Media

ISBN: 0387342281

Category: Science

Page: 317

View: 5633

This book teaches mathematical structures and how they can be applied in environmental science. Each chapter presents story problems with an emphasis on derivation. For each of these, the discussion follows the pattern of first presenting an example of a type of structure as applied to environmental science. The definition of the structure is presented, followed by additional examples using MATLAB, and analytic methods of solving and learning from the structure.

An introduction to nonlinear partial differential equations

Author: John David Logan

Publisher: Wiley-Interscience


Category: Mathematics

Page: 400

View: 5083

Uses an analytical and techniques-oriented approach to present a concise introduction to the subject focusing on time-evolution problems. Emphasizes hyperbolic and parabolic problems and includes a range of applications--chemistry, porous media, biological problems, traffic flow, reactors, heat transfer and detonation. Packed with exercises, examples and illustrations.

Methods of Applied Mathematics with a Software Overview

Author: Jon H. Davis

Publisher: Birkhäuser

ISBN: 3319433709

Category: Mathematics

Page: 781

View: 4353

Broadly organized around the applications of Fourier analysis, "Methods of Applied Mathematics with a MATLAB Overview" covers both classical applications in partial differential equations and boundary value problems, as well as the concepts and methods associated to the Laplace, Fourier, and discrete transforms. Transform inversion problems are also examined, along with the necessary background in complex variables. A final chapter treats wavelets, short-time Fourier analysis, and geometrically-based transforms. The computer program MATLAB is emphasized throughout, and an introduction to MATLAB is provided in an appendix. Rich in examples, illustrations, and exercises of varying difficulty, this text can be used for a one- or two-semester course and is ideal for students in pure and applied mathematics, physics, and engineering.

Differential Equations

An Introduction to Basic Concepts, Results, and Applications

Author: Ioan I. Vrabie

Publisher: World Scientific

ISBN: 9814335622

Category: Mathematics

Page: 460

View: 9966

This book presents, in a unitary frame and from a new perspective, the main concepts and results of one of the most fascinating branches of modern mathematics, namely differential equations, and offers the reader another point of view concerning a possible way to approach the problems of existence, uniqueness, approximation, and continuation of the solutions to a Cauchy problem. In addition, it contains simple introductions to some topics which are not usually included in classical textbooks: the exponential formula, conservation laws, generalized solutions, Caratheodory solutions, differential inclusions, variational inequalities, viability, invariance, gradient systems. In this new edition we have corrected several small errors and added the following new topics: Volterra Integral Equations and Elements of Calculus of Variations. Some problems and exercises, referring to these two new topics are also included. The bibliography has been updated and expanded.

Ordinary Differential Equations with Applications

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 0387357947

Category: Mathematics

Page: 636

View: 684

Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.

An Introduction to Nonlinear Partial Differential Equations

Author: J. David Logan

Publisher: John Wiley & Sons

ISBN: 0470225955

Category: Mathematics

Page: 397

View: 7231

An Introduction to Nonlinear Partial Differential Equations is a textbook on nonlinear partial differential equations. It is technique oriented with an emphasis on applications and is designed to build a foundation for studying advanced treatises in the field. The Second Edition features an updated bibliography as well as an increase in the number of exercises. All software references have been updated with the latest version of [email protected], the corresponding graphics have also been updated using [email protected] An increased focus on hydrogeology...

An Introduction to Mathematical Modeling

Author: Edward A. Bender

Publisher: Courier Corporation

ISBN: 9780486411804

Category: Mathematics

Page: 256

View: 9262

Accessible text features over 100 reality-based examples pulled from the science, engineering and operations research fields. Prerequisites: ordinary differential equations, continuous probability. Numerous references. Includes 27 black-and-white figures. 1978 edition.

Introduction to Partial Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

ISBN: 3319020994

Category: Mathematics

Page: 636

View: 6195

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.

Scientific Computing and Differential Equations

An Introduction to Numerical Methods

Author: Gene Howard Golub,James M. Ortega

Publisher: Academic Press

ISBN: 9780122892554

Category: Computers

Page: 337

View: 4218

A book that emphasizes the importance of solving differential equations on a computer, which comprises a large part of what has come to be called scientific computing. An introductory chapter on this topic gives an overview of modern scientific computing, outlining its applications and placing the subject in a larger context.

Probability and Partial Differential Equations in Modern Applied Mathematics

Author: Edward C. Waymire

Publisher: Springer Science & Business Media

ISBN: 038729371X

Category: Mathematics

Page: 272

View: 3786

"Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of deterministic problems, as well as to offer new perspectives on the phenomena for modeling purposes. There is also a growing appreciation of the role for the inclusion of stochastic effects in the modeling of complex systems. This has led to interesting new mathematical problems at the interface of probability, dynamical systems, numerical analysis, and partial differential equations. This volume will be useful to researchers and graduate students interested in probabilistic methods, dynamical systems approaches and numerical analysis for mathematical modeling in the sciences and engineering.

Nonlinear Ordinary Differential Equations

An Introduction for Scientists and Engineers

Author: Dominic Jordan,Peter Smith

Publisher: Oxford University Press on Demand

ISBN: 0199208247

Category: Mathematics

Page: 531

View: 6249

Thoroughly updated and expanded 4th edition of the classic text, including numerous worked examples, diagrams and exercises. An ideal resource for students and lecturers in engineering, mathematics and the sciences it is published alongside a separate Problems and Solutions Sourcebook containing over 500 problems and fully-worked solutions.

Find eBook