No one has figured more prominently in the study of the German philosopher Gottlob Frege than Michael Dummett. His magisterial Frege: Philosophy of Language is a sustained, systematic analysis of Frege's thought, omitting only the issues in philosophy of mathematics. In this work Dummett discusses, section by section, Frege's masterpiece The Foundations of Arithmetic and Frege's treatment of real numbers in the second volume of Basic Laws of Arithmetic, establishing what parts of the philosopher's views can be salvaged and employed in new theorizing, and what must be abandoned, either as incorrectly argued or as untenable in the light of technical developments. Gottlob Frege (1848-1925) was a logician, mathematician, and philosopher whose work had enormous impact on Bertrand Russell and later on the young Ludwig Wittgenstein, making Frege one of the central influences on twentieth-century Anglo-American philosophy; he is considered the founder of analytic philosophy. His philosophy of mathematics contains deep insights and remains a useful and necessary point of departure for anyone seriously studying or working in the field.

Widespread interest in Frege's general philosophical writings is, relatively speaking, a fairly recent phenomenon. But it is only very recently that his philosophy of mathematics has begun to attract the attention it now enjoys. This interest has been elicited by the discovery of the remarkable mathematical properties of Frege's contextual definition of number and of the unique character of his proposals for a theory of the real numbers. This collection of essays addresses three main developments in recent work on Frege's philosophy of mathematics: the emerging interest in the intellectual background to his logicism; the rediscovery of Frege's theorem; and the reevaluation of the mathematical content of The Basic Laws of Arithmetic. Each essay attempts a sympathetic, if not uncritical, reconstruction, evaluation, or extension of a facet of Frege's theory of arithmetic. Together they form an accessible and authoritative introduction to aspects of Frege's thought that have, until now, been largely missed by the philosophical community.

No one has figured more prominently in the study of German philosopher Gottlob Frege than Michael Dummett. This highly acclaimed book is a major contribution to the philosophy of language as well as a systematic interpretation of Frege, indisputably the father of analytic philosophy. Frege: Philosophy of Language remains indispensable for an understanding of contemporary philosophy. Harvard University Press is pleased to reissue this classic book in paperback.

This collection brings together recent scholarship on Frege, including new translations of German material which is made available to Anglophone scholars for the first time.

Bob Hale and Crispin Wright draw together here the key writings in which they have worked out their distinctive neo-Fregean approach to the philosophy of mathematics. The two main components in Frege's mathematical philosophy were his platonism and his logicism - the claims, respectively, that mathematics is a body of knowledge about independently existing objects, and that this knowledge may be acquired on the basis of general logical laws and suitable definitions. The central thesis ofthis collection is that Frege was - his own eventual recantation notwithstanding - substantially right in both claims. Where neo-Fregeanism principally differs from Frege is in taking a more optimistic view of the kind of contextual explanation (proceeding via what are now commonly called abstraction principles) of the fundamental concepts of arithmetic and analysis which Frege considered and rejected. On this basis, neo-Fregeanism promises defensible and attractive answers to some of the most important ontological and epistemological questions in the philosophy of mathematics. In addition to fourteen previously published papers, the volume features a new paper on the Julius Caesar problem; a substantial new introduction mapping out the programme and the contributions made to it by the various papers; a postscript explaining which issues most require further attention; and bibliographies both of references and of further useful sources. The Reason's Proper Study will be recognized as the most powerful presentation yet of the neo-Fregean programme; it will prove indispensable reading not just to philosophers of mathematics but to all who are interested in the fundamental metaphysical and epistemological issues on which the programme impinges.

Gottlob Frege is one of the greatest logicians ever and also a philosopher of great significance. In this book Rosado Haddock offers a critical presentation of the main topics of Frege's philosophy, including, among others, his philosophy of arithmetic, his sense-referent distinction, his distinction between function and object, and his criticisms of formalism and psychologism. More than just an introduction to Frege's philosophy this book is also a highly critical and mature assessment of it as a whole in which the limitations, confusions and other weaknesses of Frege's thought are closely examined. The author is also a Husserlian scholar and this book contains valuable discussions of Husserl's neglected views and comparisons between the two great philosophers.

Most areas of philosopher Edmund Husserlâ€™s thought have been explored, but his views on logic, mathematics, and semantics have been largely ignored. These essays offer an alternative to discussions of the philosophy of contemporary mathematics. The book covers areas of disagreement between Husserl and Gottlob Frege, the father of analytical philosophy, and explores new perspectives seen in their work.

This book contains seminal discussions of central issues in the philosophy of language, mathematics, mind, religion and time. Is common language conceptually prior to idiolectics? What is a theory of meaning? Does constructivism provide a satisfactory account of mathematics? What are indefinitely extensible concepts? Can we change the past? These are only some of the very important questions addressed here. Both the papers written by the contributors and Dummett's replies provide a great wealth of stimulating ideas for those who currently do research in the respective areas touched upon without making the reading exceedingly tedious. This feature, common to most of the papers in this book, makes it possible to use the material presented in undergraduate courses at university level.

Logicism and the Philosophy of Language brings together the core works by Gottlob Frege and Bertrand Russell on logic and language. In their separate efforts to clarify mathematics through the use of logic in the late nineteenth and early twentieth century, Frege and Russell both recognized the need for rigorous and systematic semantic analysis of language. It was their turn to this style of analysis that would establish the philosophy of language as an autonomous area of inquiry. This anthology gathers together these foundational writings, and frames them with an extensive historical introduction. This is a collection for anyone interested in questions about truth, meaning, reference, and logic, and in the application of formal analysis to these concepts.

The Foundations of Arithmetic is undoubtedly the best introduction to Frege's thought; it is here that Frege expounds the central notions of his philosophy, subjecting the views of his predecessors and contemporaries to devastating analysis. The book represents the first philosophically sound discussion of the concept of number in Western civilization. It profoundly influenced developments in the philosophy of mathematics and in general ontology.

The Philosophy of Mathematics Today gives a panorama of the best current work in this lively field, through twenty essays specially written for this collection by leading figures. The topics include indeterminacy, logical consequence, mathematical methodology, abstraction, and both Hilbert's and Frege's foundational programmes. The collection will be an important source for research in the philosophy of mathematics for years to come.

Joan Weiner here offers a challenging new approach to the philosophical works of Gottlob Frege. Her close readings invite us to rethink Frege's influence on contemporary Anglo-American philosophy, and especially on current work in logic, the philosophy of mathematics, and the philosophy of language.