Search Results: handbook-of-discrete-valued-time-series

Handbook of Discrete-Valued Time Series

Author: Richard A. Davis,Scott H. Holan,Robert Lund,Nalini Ravishanker

Publisher: CRC Press

ISBN: 1466577746

Category: Mathematics

Page: 464

View: 3454

Model a Wide Range of Count Time Series Handbook of Discrete-Valued Time Series presents state-of-the-art methods for modeling time series of counts and incorporates frequentist and Bayesian approaches for discrete-valued spatio-temporal data and multivariate data. While the book focuses on time series of counts, some of the techniques discussed can be applied to other types of discrete-valued time series, such as binary-valued or categorical time series. Explore a Balanced Treatment of Frequentist and Bayesian Perspectives Accessible to graduate-level students who have taken an elementary class in statistical time series analysis, the book begins with the history and current methods for modeling and analyzing univariate count series. It next discusses diagnostics and applications before proceeding to binary and categorical time series. The book then provides a guide to modern methods for discrete-valued spatio-temporal data, illustrating how far modern applications have evolved from their roots. The book ends with a focus on multivariate and long-memory count series. Get Guidance from Masters in the Field Written by a cohesive group of distinguished contributors, this handbook provides a unified account of the diverse techniques available for observation- and parameter-driven models. It covers likelihood and approximate likelihood methods, estimating equations, simulation methods, and a Bayesian approach for model fitting.

An Introduction to Discrete-Valued Time Series

Author: Christian H. Weiss

Publisher: John Wiley & Sons

ISBN: 1119096960

Category: Mathematics

Page: 304

View: 1930

A first approach for modeling time series of counts : the thinning-based INAR (1) model -- Further thinning-based models for count time series -- INGARCH models for count time series -- Further models for count time series -- Analyzing categorical time series -- Models for categorical time series -- Control charts for count processes -- Control charts for categorical processes

A Handbook of Time-series Analysis, Signal Processing and Dynamics

Author: D. S. G. Pollock

Publisher: Academic Press

ISBN: 9780125609906

Category: Technology & Engineering

Page: 733

View: 3919

The aim of this book is to serve as a graduate text and reference in time series analysis and signal processing, two closely related subjects that are the concern of a wide range of disciplines, such as statistics, electrical engineering, mechanical engineering and physics. The book provides a CD-ROM containing codes in PASCAL and C for the computer procedures printed in the book. It also furnishes a complete program devoted to the statistical analysis of time series, which will be attractive to a wide range of academics working in diverse mathematical disciplines.

Advances in Time Series Analysis and Forecasting

Selected Contributions from ITISE 2016

Author: Ignacio Rojas,Héctor Pomares,Olga Valenzuela

Publisher: Springer

ISBN: 3319557890

Category: Business & Economics

Page: 414

View: 3993

This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary research encompassing the disciplines of computer science, mathematics, statistics and econometrics.

The Analysis of Time Series

An Introduction, Sixth Edition

Author: Chris Chatfield

Publisher: CRC Press

ISBN: 9780203491683

Category: Mathematics

Page: 352

View: 4606

Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. With each successive edition, bestselling author Chris Chatfield has honed and refined his presentation, updated the material to reflect advances in the field, and presented interesting new data sets. The sixth edition is no exception. It provides an accessible, comprehensive introduction to the theory and practice of time series analysis. The treatment covers a wide range of topics, including ARIMA probability models, forecasting methods, spectral analysis, linear systems, state-space models, and the Kalman filter. It also addresses nonlinear, multivariate, and long-memory models. The author has carefully updated each chapter, added new discussions, incorporated new datasets, and made those datasets available for download from www.crcpress.com. A free online appendix on time series analysis using R can be accessed at http://people.bath.ac.uk/mascc/TSA.usingR.doc. Highlights of the Sixth Edition: A new section on handling real data New discussion on prediction intervals A completely revised and restructured chapter on more advanced topics, with new material on the aggregation of time series, analyzing time series in finance, and discrete-valued time series A new chapter of examples and practical advice Thorough updates and revisions throughout the text that reflect recent developments and dramatic changes in computing practices over the last few years The analysis of time series can be a difficult topic, but as this book has demonstrated for two-and-a-half decades, it does not have to be daunting. The accessibility, polished presentation, and broad coverage of The Analysis of Time Series make it simply the best introduction to the subject available.

Handbook of Cluster Analysis

Author: Christian Hennig,Marina Meila,Fionn Murtagh,Roberto Rocci

Publisher: CRC Press

ISBN: 1466551895

Category: Business & Economics

Page: 753

View: 7181

Handbook of Cluster Analysis provides a comprehensive and unified account of the main research developments in cluster analysis. Written by active, distinguished researchers in this area, the book helps readers make informed choices of the most suitable clustering approach for their problem and make better use of existing cluster analysis tools. The book is organized according to the traditional core approaches to cluster analysis, from the origins to recent developments. After an overview of approaches and a quick journey through the history of cluster analysis, the book focuses on the four major approaches to cluster analysis. These approaches include methods for optimizing an objective function that describes how well data is grouped around centroids, dissimilarity-based methods, mixture models and partitioning models, and clustering methods inspired by nonparametric density estimation. The book also describes additional approaches to cluster analysis, including constrained and semi-supervised clustering, and explores other relevant issues, such as evaluating the quality of a cluster. This handbook is accessible to readers from various disciplines, reflecting the interdisciplinary nature of cluster analysis. For those already experienced with cluster analysis, the book offers a broad and structured overview. For newcomers to the field, it presents an introduction to key issues. For researchers who are temporarily or marginally involved with cluster analysis problems, the book gives enough algorithmic and practical details to facilitate working knowledge of specific clustering areas.

Handbook of Missing Data Methodology

Author: Geert Molenberghs,Garrett Fitzmaurice,Michael G. Kenward,Anastasios Tsiatis,Geert Verbeke

Publisher: CRC Press

ISBN: 1439854610

Category: Mathematics

Page: 600

View: 3894

Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.

A First Course in Linear Model Theory

Author: Nalini Ravishanker,Dipak K. Dey

Publisher: CRC Press

ISBN: 9781584882473

Category: Mathematics

Page: 496

View: 8121

This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation for studying the theory and applications of both univariate and multivariate linear models A First Course in Linear Model Theory systematically presents the basic theory behind linear statistical models with motivation from an algebraic as well as a geometric perspective. Through the concepts and tools of matrix and linear algebra and distribution theory, it provides a framework for understanding classical and contemporary linear model theory. It does not merely introduce formulas, but develops in students the art of statistical thinking and inspires learning at an intuitive level by emphasizing conceptual understanding. The authors' fresh approach, methodical presentation, wealth of examples, and introduction to topics beyond the classical theory set this book apart from other texts on linear models. It forms a refreshing and invaluable first step in students' study of advanced linear models, generalized linear models, nonlinear models, and dynamic models.

Advances in Survival Analysis

Author: N. Balakrishnan,C.R. Rao

Publisher: Elsevier

ISBN: 9780080495118

Category: Mathematics

Page: 822

View: 7286

Handbook of Statistics: Advances in Survival Analysis covers all important topics in the area of Survival Analysis. Each topic has been covered by one or more chapters written by internationally renowned experts. Each chapter provides a comprehensive and up-to-date review of the topic. Several new illustrative examples have been used to demonstrate the methodologies developed. The book also includes an exhaustive list of important references in the area of Survival Analysis. Includes up-to-date reviews on many important topics Chapters written by many internationally renowned experts Some Chapters provide completely new methodologies and analyses Includes some new data and methods of analyzing them

Handbook of Constraint Programming

Author: Francesca Rossi,Peter van Beek,Toby Walsh

Publisher: Elsevier

ISBN: 9780080463803

Category: Computers

Page: 978

View: 1637

Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics. The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area. The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas. The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming. - Covers the whole field of constraint programming - Survey-style chapters - Five chapters on applications

Handbook Of The Fundamentals Of Financial Decision Making (In 2 Parts)

Author: Maclean Leonard C,Ziemba William T

Publisher: World Scientific

ISBN: 981441736X

Category: Business & Economics

Page: 940

View: 7035

This handbook in two parts covers key topics of the theory of financial decision making. Some of the papers discuss real applications or case studies as well. There are a number of new papers that have never been published before especially in Part II.Part I is concerned with Decision Making Under Uncertainty. This includes subsections on Arbitrage, Utility Theory, Risk Aversion and Static Portfolio Theory, and Stochastic Dominance. Part II is concerned with Dynamic Modeling that is the transition for static decision making to multiperiod decision making. The analysis starts with Risk Measures and then discusses Dynamic Portfolio Theory, Tactical Asset Allocation and Asset-Liability Management Using Utility and Goal Based Consumption-Investment Decision Models.A comprehensive set of problems both computational and review and mind expanding with many unsolved problems are in an accompanying problems book. The handbook plus the book of problems form a very strong set of materials for PhD and Masters courses both as the main or as supplementary text in finance theory, financial decision making and portfolio theory. For researchers, it is a valuable resource being an up to date treatment of topics in the classic books on these topics by Johnathan Ingersoll in 1988, and William Ziemba and Raymond Vickson in 1975 (updated 2nd edition published in 2006).

Handbook of Mathematics and Computational Science

Author: John W. Harris,Horst Stöcker

Publisher: Springer Science & Business Media

ISBN: 9780387947464

Category: Mathematics

Page: 1028

View: 6749

This book gathers thousands of up-to-date equations, formulas, tables, illustrations, and explanations into one invaluable volume. It includes over a thousand pages of mathematical material as well as chapters on probability, mathematical statistics, fuzzy logic, and neural networks. It also contains computer language overviews of C, Fortran, and Pascal.

Time Series Analysis and Its Applications

With R Examples

Author: Robert H. Shumway,David S. Stoffer

Publisher: Springer

ISBN: 3319524526

Category: Mathematics

Page: 562

View: 3819

The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book’s website for download, making all the data sets and scripts easy to load into R.

Handbook of Weighted Automata

Author: Manfred Droste,Werner Kuich,Heiko Vogler

Publisher: Springer Science & Business Media

ISBN: 3642014925

Category: Computers

Page: 608

View: 4563

The purpose of this Handbook is to highlight both theory and applications of weighted automata. Weighted finite automata are classical nondeterministic finite automata in which the transitions carry weights. These weights may model, e. g. , the cost involved when executing a transition, the amount of resources or time needed for this,or the probability or reliability of its successful execution. The behavior of weighted finite automata can then be considered as the function (suitably defined) associating with each word the weight of its execution. Clearly, weights can also be added to classical automata with infinite state sets like pushdown automata; this extension constitutes the general concept of weighted automata. To illustrate the diversity of weighted automata, let us consider the following scenarios. Assume that a quantitative system is modeled by a classical automaton in which the transitions carry as weights the amount of resources needed for their execution. Then the amount of resources needed for a path in this weighted automaton is obtained simply as the sum of the weights of its transitions. Given a word, we might be interested in the minimal amount of resources needed for its execution, i. e. , for the successful paths realizing the given word. In this example, we could also replace the “resources” by “profit” and then be interested in the maximal profit realized, correspondingly, by a given word.

Handbook of Financial Econometrics

Tools and Techniques

Author: Yacine Ait-Sahalia,Lars Peter Hansen

Publisher: Elsevier

ISBN: 9780080929842

Category: Business & Economics

Page: 808

View: 7159

This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity Contributors include Nobel Laureate Robert Engle and leading econometricians Offers a clarity of method and explanation unavailable in other financial econometrics collections

Analysis of Financial Time Series

Author: Ruey S. Tsay

Publisher: John Wiley & Sons

ISBN: 0471746185

Category: Business & Economics

Page: 576

View: 7707

Provides statistical tools and techniques needed to understand today's financial markets The Second Edition of this critically acclaimed text provides a comprehensive and systematic introduction to financial econometric models and their applications in modeling and predicting financial time series data. This latest edition continues to emphasize empirical financial data and focuses on real-world examples. Following this approach, readers will master key aspects of financial time series, including volatility modeling, neural network applications, market microstructure and high-frequency financial data, continuous-time models and Ito's Lemma, Value at Risk, multiple returns analysis, financial factor models, and econometric modeling via computation-intensive methods. The author begins with the basic characteristics of financial time series data, setting the foundation for the three main topics: Analysis and application of univariate financial time series Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text, including the addition of S-Plus® commands and illustrations. Exercises have been thoroughly updated and expanded and include the most current data, providing readers with more opportunities to put the models and methods into practice. Among the new material added to the text, readers will find: Consistent covariance estimation under heteroscedasticity and serial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing a deeper understanding of financial markets through firsthand experience in working with financial data. This is an ideal textbook for MBA students as well as a reference for researchers and professionals in business and finance.

Handbook of Computational Social Choice

Author: Felix Brandt,Vincent Conitzer,Ulle Endriss,Jérôme Lang,Ariel D. Procaccia

Publisher: Cambridge University Press

ISBN: 1316489752

Category: Computers

Page: N.A

View: 3136

The rapidly growing field of computational social choice, at the intersection of computer science and economics, deals with the computational aspects of collective decision making. This handbook, written by thirty-six prominent members of the computational social choice community, covers the field comprehensively. Chapters devoted to each of the field's major themes offer detailed introductions. Topics include voting theory (such as the computational complexity of winner determination and manipulation in elections), fair allocation (such as algorithms for dividing divisible and indivisible goods), coalition formation (such as matching and hedonic games), and many more. Graduate students, researchers, and professionals in computer science, economics, mathematics, political science, and philosophy will benefit from this accessible and self-contained book.

Handbook of Statistical Methods and Analyses in Sports

Author: Jim Albert,Mark E. Glickman,Tim B. Swartz,Ruud H. Koning

Publisher: CRC Press

ISBN: 1351678965

Category: Mathematics

Page: 520

View: 7298

This handbook will provide both overviews of statistical methods in sports and in-depth treatment of critical problems and challenges confronting statistical research in sports. The material in the handbook will be organized by major sport (baseball, football, hockey, basketball, and soccer) followed by a section on other sports and general statistical design and analysis issues that are common to all sports. This handbook has the potential to become the standard reference for obtaining the necessary background to conduct serious statistical analyses for sports applications and to appreciate scholarly work in this expanding area.

Handbook of Survival Analysis

Author: John P. Klein,Hans C. van Houwelingen,Joseph G. Ibrahim,Thomas H. Scheike

Publisher: CRC Press

ISBN: 146655567X

Category: Mathematics

Page: 656

View: 7871

Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians

Analyzing Longitudinal Clinical Trial Data

A Practical Guide

Author: Craig Mallinckrodt,Ilya Lipkovich

Publisher: CRC Press

ISBN: 1351737686

Category: Mathematics

Page: 336

View: 1763

Analyzing Longitudinal Clinical Trial Data: A Practical Guide provide practical and easy to implement approaches for bringing the latest theory on analysis of longitudinal clinical trial data into routine practice.?This book, with its example-oriented approach that includes numerous SAS and R code fragments, is an essential resource for statisticians and graduate students specializing in medical research. The authors provide clear descriptions of the relevant statistical theory and illustrate practical considerations for modeling longitudinal data. Topics covered include choice of endpoint and statistical test; modeling means and the correlations between repeated measurements; accounting for covariates; modeling categorical data; model verification; methods for incomplete (missing) data that includes the latest developments in sensitivity analyses, along with approaches for and issues in choosing estimands; and means for preventing missing data. Each chapter stands alone in its coverage of a topic. The concluding chapters provide detailed advice on how to integrate these independent topics into an over-arching study development process and statistical analysis plan.

Find eBook