Introduction To Advanced Mathematics A Guide To Understanding Proofs PDF EPUB Download

Introduction To Advanced Mathematics A Guide To Understanding Proofs also available in docx and mobi. Read Introduction To Advanced Mathematics A Guide To Understanding Proofs online, read in mobile or Kindle.

Introduction to Advanced Mathematics: A Guide to Understanding Proofs

Author: Connie M. Campbell

Publisher: Cengage Learning

ISBN:

Category: Mathematics

Page: 144

View: 419

This text offers a crucial primer on proofs and the language of mathematics. Brief and to the point, it lays out the fundamental ideas of abstract mathematics and proof techniques that students will need to master for other math courses. Campbell presents these concepts in plain English, with a focus on basic terminology and a conversational tone that draws natural parallels between the language of mathematics and the language students communicate in every day. The discussion highlights how symbols and expressions are the building blocks of statements and arguments, the meanings they convey, and why they are meaningful to mathematicians. In-class activities provide opportunities to practice mathematical reasoning in a live setting, and an ample number of homework exercises are included for self-study. This text is appropriate for a course in Foundations of Advanced Mathematics taken by students who've had a semester of calculus, and is designed to be accessible to students with a wide range of mathematical proficiency. It can also be used as a self-study reference, or as a supplement in other math courses where additional proofs practice is needed. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

A Transition to Proof

An Introduction to Advanced Mathematics

Author: Neil R. Nicholson

Publisher: CRC Press

ISBN:

Category: Mathematics

Page: 450

View: 939

A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do’s and don’ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology

A TeXas Style Introduction to Proof

Author: Ron Taylor

Publisher: The Mathematical Association of America

ISBN:

Category: Mathematics

Page: 176

View: 739

A TeXas Style Introduction to Proof is an IBL textbook designed for a one-semester course on proofs (the "bridge course") that also introduces TeX as a tool students can use to communicate their work. As befitting "textless" text, the book is, as one reviewer characterized it, "minimal." Written in an easy-going style, the exposition is just enough to support the activities, and it is clear, concise, and effective. The book is well organized and contains ample carefully selected exercises that are varied, interesting, and probing, without being discouragingly difficult.

How to read and do proofs

an introduction to mathematical thought processes

Author: Daniel Solow

Publisher: Wiley

ISBN:

Category: Mathematics

Page: 269

View: 251

An easy-to-use guide that shows how to read, understand, and do proofs. Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.

Numbers and Proofs

Author: Reg Allenby

Publisher: Butterworth-Heinemann

ISBN:

Category: Mathematics

Page: 274

View: 626

'Numbers and Proofs' presents a gentle introduction to the notion of proof to give the reader an understanding of how to decipher others' proofs as well as construct their own. Useful methods of proof are illustrated in the context of studying problems concerning mainly numbers (real, rational, complex and integers). An indispensable guide to all students of mathematics. Each proof is preceded by a discussion which is intended to show the reader the kind of thoughts they might have before any attempt proof is made. Established proofs which the student is in a better position to follow then follow. Presented in the author's entertaining and informal style, and written to reflect the changing profile of students entering universities, this book will prove essential reading for all seeking an introduction to the notion of proof as well as giving a definitive guide to the more common forms. Stressing the importance of backing up "truths" found through experimentation, with logically sound and watertight arguments, it provides an ideal bridge to more complex undergraduate maths.

Research in Collegiate Mathematics Education VII

Author: Fernando Hitt

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 261

View: 872

The present volume of Research in Collegiate Mathematics Education, like previous volumes in this series, reflects the importance of research in mathematics education at the collegiate level. The editors in this series encourage communication between mathematicians and mathematics educators, and as pointed out by the International Commission of Mathematics Instruction (ICMI), much more work is needed in concert with these two groups. Indeed, editors of RCME are aware of this need and the articles published in this series are in line with that goal. Nine papers constitute this volume. The first two examine problems students experience when converting a representation from one particular system of representations to another. The next three papers investigate students learning about proofs. In the next two papers, the focus is instructor knowledge for teaching calculus. The final two papers in the volume address the nature of ``conception'' in mathematics. Whether they are specialists in education or mathematicians interested in finding out about the field, readers will obtain new insights about teaching and learning and will take away ideas that they can use.

An Introduction to Continuous-Time Stochastic Processes

Theory, Models, and Applications to Finance, Biology, and Medicine

Author: Vincenzo Capasso

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 434

View: 565

Expanding on the first edition of An Introduction to Continuous-Time Stochastic Processes, this concisely written book is a rigorous and self-contained introduction to the theory of continuous-time stochastic processes. A balance of theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required.

Student Writing in the Quantitative Disciplines

A Guide for College Faculty

Author: Patrick Bahls

Publisher: John Wiley & Sons

ISBN:

Category: Education

Page: 192

View: 436

Designing interesting problems and writing assignments is one ofthe chief tasks of all teachers, but it can be especiallychallenging to translate and apply learning theory, good teachingtechniques, and writing assignments into STEM and otherquantitative disciplines. Student Writing in the QuantitativeDisciplines offers instructors in math-based disciplines meaningfulapproaches to making their coursework richer and more relevant fortheir students, as well as satisfying institutional imperatives forwriting curricula. This important resource provides instructorswith the hands-on skills needed to guide their students in writingwell in quantitative courses at all levels of the collegecurriculum and to promote students' general cognitive andintellectual growth. Comprehensive in scope, the book includes: Ideas for using writing as a means of learning mathematicalconcepts Illustrative examples of effective writing activities andassignments in a number of different genres Assessment criteria and effective strategies for responding tostudents' writing Examples of ways to help students engage in peer review,revision, and resubmission of their written work "Those of us who spend our lives urging faculty in alldisciplines to integrate more writing into their courses havewished for the day when someone like Patrick Bahls would stepforward with a book like this one."—Chris M. Anson, UniversityDistinguished Professor and director, Campus Writing and SpeakingProgram, North Carolina State University "Written by a mathematician, this readable, theoretically soundbook describes practical strategies for teachers in thequantitative sciences to assign and respond to students' writing.It also describes numerous approaches to writing that engagestudents in disciplinary learning, collaborative discovery, andeffective communication."—Art Young, Campbell Professor ofEnglish emeritus, Clemson University "Loaded with practical advice, this timely, important, andengaging book will be an invaluable resource for instructorswishing to bring the benefits of writing-to-learn to thequantitative disciplines. As a mathematician thoroughly grounded inwriting-across-the-curriculum scholarship, Bahls brings humor,classroom experience, and pedagogical savvy to a mission he clearlyloves—improving the quality of student learning in math andscience."—John C. Bean, professor, Seattle University, andauthor, Engaging Ideas

Euclidean and Transformational Geometry: A Deductive Inquiry

Author: Shlomo Libeskind

Publisher: Jones & Bartlett Publishers

ISBN:

Category: Mathematics

Page: 371

View: 399

Ideal for mathematics majors and prospective secondary school teachers, Euclidean and Transformational Geometry provides a complete and solid presentation of Euclidean geometry with an emphasis on solving challenging problems. The author examines various strategies and heuristics for approaching proofs and discusses the process students should follow to determine how to proceed from one step to the next through numerous problem solving techniques. A large collection of problems, varying in level of difficulty, are integrated throughout the text and suggested hints for the more challenging problems appear in the instructor's solutions manual and can be used at the instructor's discretion.

A Transition to Advanced Mathematics

Author: Douglas Smith

Publisher: Thomson Brooks/Cole

ISBN:

Category: Mathematics

Page: 344

View: 107

Best Books