Search Results: invitation-to-dynamical-systems-dover-books-on-mathematics

Invitation to Dynamical Systems

Author: Edward R. Scheinerman

Publisher: Courier Corporation

ISBN: 0486275329

Category: Mathematics

Page: 408

View: 3500

This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.

Dynamical Systems

Author: Shlomo Sternberg

Publisher: Courier Corporation

ISBN: 0486135144

Category: Mathematics

Page: 272

View: 4996

A pioneer in the field of dynamical systems discusses one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials include PowerPoint slides and MATLAB exercises. 2010 edition.

Handbook of Dynamic System Modeling

Author: Paul A. Fishwick

Publisher: CRC Press

ISBN: 9781420010855

Category: Mathematics

Page: 760

View: 857

The topic of dynamic models tends to be splintered across various disciplines, making it difficult to uniformly study the subject. Moreover, the models have a variety of representations, from traditional mathematical notations to diagrammatic and immersive depictions. Collecting all of these expressions of dynamic models, the Handbook of Dynamic System Modeling explores a panoply of different types of modeling methods available for dynamical systems. Featuring an interdisciplinary, balanced approach, the handbook focuses on both generalized dynamic knowledge and specific models. It first introduces the general concepts, representations, and philosophy of dynamic models, followed by a section on modeling methodologies that explains how to portray designed models on a computer. After addressing scale, heterogeneity, and composition issues, the book covers specific model types that are often characterized by specific visual- or text-based grammars. It concludes with case studies that employ two well-known commercial packages to construct, simulate, and analyze dynamic models. A complete guide to the fundamentals, types, and applications of dynamic models, this handbook shows how systems function and are represented over time and space and illustrates how to select a particular model based on a specific area of interest.

Introduction to Dynamical Systems

Author: Michael Brin,Garrett Stuck

Publisher: Cambridge University Press

ISBN: 9781139433976

Category: Mathematics

Page: N.A

View: 7111

This book provides a broad introduction to the subject of dynamical systems, suitable for a one- or two-semester graduate course. In the first chapter, the authors introduce over a dozen examples, and then use these examples throughout the book to motivate and clarify the development of the theory. Topics include topological dynamics, symbolic dynamics, ergodic theory, hyperbolic dynamics, one-dimensional dynamics, complex dynamics, and measure-theoretic entropy. The authors top off the presentation with some beautiful and remarkable applications of dynamical systems to such areas as number theory, data storage, and Internet search engines. This book grew out of lecture notes from the graduate dynamical systems course at the University of Maryland, College Park, and reflects not only the tastes of the authors, but also to some extent the collective opinion of the Dynamics Group at the University of Maryland, which includes experts in virtually every major area of dynamical systems.

Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 1041

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Differential Equations and Dynamical Systems

Author: Lawrence Perko

Publisher: Springer Science & Business Media

ISBN: 1461300037

Category: Mathematics

Page: 557

View: 7656

This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

A First Course in Discrete Dynamical Systems

Author: Richard A. Holmgren

Publisher: Springer Science & Business Media

ISBN: 1441987320

Category: Mathematics

Page: 223

View: 5395

Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.

Nonlinear Differential Equations and Dynamical Systems

Author: Ferdinand Verhulst

Publisher: Springer Science & Business Media

ISBN: 3642614531

Category: Mathematics

Page: 306

View: 613

For lecture courses that cover the classical theory of nonlinear differential equations associated with Poincare and Lyapunov and introduce the student to the ideas of bifurcation theory and chaos, this text is ideal. Its excellent pedagogical style typically consists of an insightful overview followed by theorems, illustrative examples, and exercises.

Introduction to Nonlinear Differential and Integral Equations

Author: Harold Thayer Davis

Publisher: Courier Corporation

ISBN: 9780486609713

Category: Mathematics

Page: 566

View: 9712

Topics covered include differential equations of the 1st order, the Riccati equation and existence theorems, 2nd order equations, elliptic integrals and functions, nonlinear mechanics, nonlinear integral equations, more. Includes 137 problems.

Curvature in Mathematics and Physics

Author: Shlomo Sternberg

Publisher: Courier Corporation

ISBN: 0486292711

Category: Mathematics

Page: 416

View: 2540

Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.

A First Course in Dynamics

with a Panorama of Recent Developments

Author: Boris Hasselblatt,Anatole Katok

Publisher: Cambridge University Press

ISBN: 1316582655

Category: Mathematics

Page: N.A

View: 2116

The theory of dynamical systems is a major mathematical discipline closely intertwined with all main areas of mathematics. It has greatly stimulated research in many sciences and given rise to the vast new area variously called applied dynamics, nonlinear science, or chaos theory. This introduction for senior undergraduate and beginning graduate students of mathematics, physics, and engineering combines mathematical rigor with copious examples of important applications. It covers the central topological and probabilistic notions in dynamics ranging from Newtonian mechanics to coding theory. Readers need not be familiar with manifolds or measure theory; the only prerequisite is a basic undergraduate analysis course. The authors begin by describing the wide array of scientific and mathematical questions that dynamics can address. They then use a progression of examples to present the concepts and tools for describing asymptotic behavior in dynamical systems, gradually increasing the level of complexity. The final chapters introduce modern developments and applications of dynamics. Subjects include contractions, logistic maps, equidistribution, symbolic dynamics, mechanics, hyperbolic dynamics, strange attractors, twist maps, and KAM-theory.

An Introduction to Dynamical Systems

Continuous and Discrete

Author: Rex Clark Robinson

Publisher: American Mathematical Soc.

ISBN: 0821891359

Category: Mathematics

Page: 733

View: 3618

This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.

Introduction to Dynamics

Author: I. C. Percival,D. Richards

Publisher: Cambridge University Press

ISBN: 9780521281492

Category: Mathematics

Page: 228

View: 1740

A new approach to dynamics that takes account of recent advances that have wide applications in the sciences and engineering. It introduces the subject at an undergraduate level by means of elementary qualitative theory of differential equations, the geometry of phase curves, and the theory of stability.

Differentiable Dynamical Systems

Author: Lan Wen

Publisher: American Mathematical Soc.

ISBN: 1470427990

Category: Differential equations

Page: 192

View: 5810

This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the Ω-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to [email protected] for more information.

Introduction to Dynamic Systems

Theory, Models, and Applications

Author: David G. Luenberger

Publisher: Wiley

ISBN: N.A

Category: Science

Page: 464

View: 5121

Integrates the traditional approach to differential equations with the modern systems and control theoretic approach to dynamic systems, emphasizing theoretical principles and classic models in a wide variety of areas. Provides a particularly comprehensive theoretical development that includes chapters on positive dynamic systems and optimal control theory. Contains numerous problems.

Nonlinear Dynamics

Exploration Through Normal Forms

Author: Peter B. Kahn,Yair Zarmi

Publisher: Courier Corporation

ISBN: 0486780457

Category: Science

Page: 416

View: 8909

.".. an unabridged and corrected republication of the edition originally published in the 'Wiley Series in Nonlinear Science' by John Wiley & Sons, Inc., New York, in 1998"--Title page verso.

An Introduction to Symbolic Dynamics and Coding

Author: Douglas Lind,Brian Marcus

Publisher: Cambridge University Press

ISBN: 9780521559003

Category: Mathematics

Page: 495

View: 610

Symbolic dynamics is a rapidly growing area of dynamical systems. Although it originated as a method to study general dynamical systems, it has found significant uses in coding for data storage and transmission as well as in linear algebra. This book is the first general textbook on symbolic dynamics and its applications to coding. Mathematical prerequisites are relatively modest (mainly linear algebra at the undergraduate level) especially for the first half of the book. Topics are carefully developed and motivated with many examples, and there are over 500 exercises to test the reader's understanding. The last chapter contains a survey of more advanced topics, and a comprehensive bibliography is included. This book will serve as an introduction to symbolic dynamics for advanced undergraduate students in mathematics, engineering, and computer science.

Mathematics of Classical and Quantum Physics

Author: Frederick W. Byron,Robert W. Fuller

Publisher: Courier Corporation

ISBN: 0486135063

Category: Science

Page: 672

View: 1585

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Elements of Partial Differential Equations

Author: Ian N. Sneddon

Publisher: Courier Corporation

ISBN: 0486162990

Category: Mathematics

Page: 352

View: 9993

This text features numerous worked examples in its presentation of elements from the theory of partial differential equations, emphasizing forms suitable for solving equations. Solutions to odd-numbered problems appear at the end. 1957 edition.

Control System Design

An Introduction to State-Space Methods

Author: Bernard Friedland

Publisher: Courier Corporation

ISBN: 048613511X

Category: Science

Page: 528

View: 8636

Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.

Find eBook