Search Results: learning-scientific-programming-with-python

Learning Scientific Programming with Python

Author: Christian Hill

Publisher: Cambridge University Press

ISBN: 1107075416

Category: Computers

Page: 482

View: 7433

Learn to master basic programming tasks from scratch with real-life scientific examples in this complete introduction to Python.

Data Science mit Python

Das Handbuch für den Einsatz von IPython, Jupyter, NumPy, Pandas, Matplotlib und Scikit-Learn

Author: Jake VanderPlas

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958456979

Category: Computers

Page: 552

View: 2183

Die wichtigsten Tools für die Datenanalyse und-bearbeitung im praktischen Einsatz Python effizient für datenintensive Berechnungen einsetzen mit IPython und Jupyter Laden, Speichern und Bearbeiten von Daten und numerischen Arrays mit NumPy und Pandas Visualisierung von Daten mit Matplotlib Python ist für viele die erste Wahl für Data Science, weil eine Vielzahl von Ressourcen und Bibliotheken zum Speichern, Bearbeiten und Auswerten von Daten verfügbar ist. In diesem Buch erläutert der Autor den Einsatz der wichtigsten Tools. Für Datenanalytiker und Wissenschaftler ist dieses umfassende Handbuch von unschätzbarem Wert für jede Art von Berechnung mit Python sowie bei der Erledigung alltäglicher Aufgaben. Dazu gehören das Bearbeiten, Umwandeln und Bereinigen von Daten, die Visualisierung verschiedener Datentypen und die Nutzung von Daten zum Erstellen von Statistiken oder Machine-Learning-Modellen. Dieses Handbuch erläutert die Verwendung der folgenden Tools: ● IPython und Jupyter für datenintensive Berechnungen ● NumPy und Pandas zum effizienten Speichern und Bearbeiten von Daten und Datenarrays in Python ● Matplotlib für vielfältige Möglichkeiten der Visualisierung von Daten ● Scikit-Learn zur effizienten und sauberen Implementierung der wichtigsten und am meisten verbreiteten Algorithmen des Machine Learnings Der Autor zeigt Ihnen, wie Sie die zum Betreiben von Data Science verfügbaren Pakete nutzen, um Daten effektiv zu speichern, zu handhaben und Einblick in diese Daten zu gewinnen. Grundlegende Kenntnisse in Python werden dabei vorausgesetzt. Leserstimme zum Buch: »Wenn Sie Data Science mit Python betreiben möchten, ist dieses Buch ein hervorragender Ausgangspunkt. Ich habe es sehr erfolgreich beim Unterrichten von Informatik- und Statistikstudenten eingesetzt. Jake geht weit über die Grundlagen der Open-Source-Tools hinaus und erläutert die grundlegenden Konzepte, Vorgehensweisen und Abstraktionen in klarer Sprache und mit verständlichen Erklärungen.« – Brian Granger, Physikprofessor, California Polytechnic State University, Mitbegründer des Jupyter-Projekts

A Primer on Scientific Programming with Python

Author: Hans Petter Langtangen

Publisher: Springer

ISBN: 3662498871

Category: Computers

Page: 922

View: 2716

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015

Datenanalyse mit Python

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 453

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Python programmieren lernen für Dummies

Author: John Paul Mueller

Publisher: John Wiley & Sons

ISBN: 3527815473

Category: Computers

Page: 408

View: 8494

Einführung in Python

Author: Mark Lutz,David Ascher,Dinu C. Gherman

Publisher: O'Reilly Germany

ISBN: 3897214881

Category: Python (Computer program language)

Page: 624

View: 2395

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3955618072

Category: Computers

Page: 320

View: 5096

Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Zur aktualisierten Auflage Diese Auflage behandelt Python 3, geht dabei aber auch auf Unterschiede zu Python 2 ein. Außerdem wurde das Buch um die Themen Unicode, List und Dictionary Comprehensions, den Mengen-Typ Set, die String-Format-Methode und print als Funktion ergänzt. Jenseits reiner Theorie Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält.

Python kurz & gut

Author: Mark Lutz

Publisher: O'Reilly Germany

ISBN: 3955617718

Category: Computers

Page: 280

View: 1231

Die objektorientierte Sprache Python eignet sich hervorragend zum Schreiben von Skripten, Programmen und Prototypen. Sie ist frei verfügbar, leicht zu lernen und zwischen allen wichtigen Plattformen portabel, einschließlich Linux, Unix, Windows und Mac OS. Damit Sie im Programmieralltag immer den Überblick behalten, sind die verschiedenen Sprachmerkmale und Elemente in Python – kurz & gut übersichtlich zusammengestellt. Für Auflage 5 wurde die Referenz komplett überarbeitet, erweitert und auf den neuesten Stand gebracht, so dass sie die beiden aktuellen Versionen 2.7 und 3.4 berücksichtigt. Python – kurz & gut behandelt unter anderem: Eingebaute Typen wie Zahlen, Listen, Dictionarys u.v.a.; nweisungen und Syntax für Entwicklung und Ausführung von Objekten; Die objektorientierten Entwicklungstools in Python; Eingebaute Funktionen, Ausnahmen und Attribute; pezielle Methoden zur Operatorenüberladung; Weithin benutzte Standardbibliotheksmodule und Erweiterungen; Kommandozeilenoptionen und Entwicklungswerkzeuge. Mark Lutz stieg 1992 in die Python-Szene ein und ist seitdem als aktiver Pythonista bekannt. Er gibt Kurse, hat zahlreiche Bücher geschrieben und mehrere Python-Systeme programmiert.

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

Author: Al Sweigart

Publisher: dpunkt.verlag

ISBN: 3864919932

Category: Computers

Page: 576

View: 1906

Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 2638

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Struktur und Interpretation von Computerprogrammen

Eine Informatik-Einführung

Author: Harold Abelson,Gerald J. Sussman

Publisher: Springer-Verlag

ISBN: 3642977278

Category: Computers

Page: 682

View: 5106

Python von Kopf bis Fuß

Author: Paul Barry

Publisher: O'Reilly Germany

ISBN: 3955619427

Category: Computers

Page: 496

View: 3432

Haben Sie sich schon einmal gewünscht, Sie könnten Python mithilfe eines Buchs lernen? Mit Python von Kopf bis Fuß funktioniert das hervorragend, weil es auf einzigartige Weise über die Syntax und schlichtes Mach-dies-mach-jenes hinausgeht. Die Grundlagen erfassen Sie hier schnell, und dann es geht auch schon weiter mit Persistenz, Ausnahmebehandlung, Webentwicklung, SQLite, Datenverarbeitung und Googles App Engine. Sie lernen außerdem, wie Sie dank Pythons unglaublicher Möglichkeiten mobile Apps für Android-Smartphones schreiben. Nach dem Lernerlebnis von Python von Kopf bis Fuß können Sie Ihrer weiteren Python-Laufbahn ganz zuversichtlich entgegensehen!

Clean Code - Refactoring, Patterns, Testen und Techniken für sauberen Code

Deutsche Ausgabe

Author: Robert C. Martin

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3826696387

Category: Computers

Page: 480

View: 8765

h2> Kommentare, Formatierung, Strukturierung Fehler-Handling und Unit-Tests Zahlreiche Fallstudien, Best Practices, Heuristiken und Code Smells Clean Code - Refactoring, Patterns, Testen und Techniken für sauberen Code Aus dem Inhalt: Lernen Sie, guten Code von schlechtem zu unterscheiden Sauberen Code schreiben und schlechten Code in guten umwandeln Aussagekräftige Namen sowie gute Funktionen, Objekte und Klassen erstellen Code so formatieren, strukturieren und kommentieren, dass er bestmöglich lesbar ist Ein vollständiges Fehler-Handling implementieren, ohne die Logik des Codes zu verschleiern Unit-Tests schreiben und Ihren Code testgesteuert entwickeln Selbst schlechter Code kann funktionieren. Aber wenn der Code nicht sauber ist, kann er ein Entwicklungsunternehmen in die Knie zwingen. Jedes Jahr gehen unzählige Stunden und beträchtliche Ressourcen verloren, weil Code schlecht geschrieben ist. Aber das muss nicht sein. Mit Clean Code präsentiert Ihnen der bekannte Software-Experte Robert C. Martin ein revolutionäres Paradigma, mit dem er Ihnen aufzeigt, wie Sie guten Code schreiben und schlechten Code überarbeiten. Zusammen mit seinen Kollegen von Object Mentor destilliert er die besten Praktiken der agilen Entwicklung von sauberem Code zu einem einzigartigen Buch. So können Sie sich die Erfahrungswerte der Meister der Software-Entwicklung aneignen, die aus Ihnen einen besseren Programmierer machen werden – anhand konkreter Fallstudien, die im Buch detailliert durchgearbeitet werden. Sie werden in diesem Buch sehr viel Code lesen. Und Sie werden aufgefordert, darüber nachzudenken, was an diesem Code richtig und falsch ist. Noch wichtiger: Sie werden herausgefordert, Ihre professionellen Werte und Ihre Einstellung zu Ihrem Beruf zu überprüfen. Clean Code besteht aus drei Teilen:Der erste Teil beschreibt die Prinzipien, Patterns und Techniken, die zum Schreiben von sauberem Code benötigt werden. Der zweite Teil besteht aus mehreren, zunehmend komplexeren Fallstudien. An jeder Fallstudie wird aufgezeigt, wie Code gesäubert wird – wie eine mit Problemen behaftete Code-Basis in eine solide und effiziente Form umgewandelt wird. Der dritte Teil enthält den Ertrag und den Lohn der praktischen Arbeit: ein umfangreiches Kapitel mit Best Practices, Heuristiken und Code Smells, die bei der Erstellung der Fallstudien zusammengetragen wurden. Das Ergebnis ist eine Wissensbasis, die beschreibt, wie wir denken, wenn wir Code schreiben, lesen und säubern. Dieses Buch ist ein Muss für alle Entwickler, Software-Ingenieure, Projektmanager, Team-Leiter oder Systemanalytiker, die daran interessiert sind, besseren Code zu produzieren. Über den Autor: Robert C. »Uncle Bob« Martin entwickelt seit 1970 professionell Software. Seit 1990 arbeitet er international als Software-Berater. Er ist Gründer und Vorsitzender von Object Mentor, Inc., einem Team erfahrener Berater, die Kunden auf der ganzen Welt bei der Programmierung in und mit C++, Java, C#, Ruby, OO, Design Patterns, UML sowie Agilen Methoden und eXtreme Programming helfen.

A Student's Guide to Python for Physical Modeling

Author: Jesse M. Kinder,Philip Nelson

Publisher: Princeton University Press

ISBN: 1400889421

Category: Computers

Page: 168

View: 7581

A fully updated tutorial on the basics of the Python programming language for science students Python is a computer programming language that is rapidly gaining popularity throughout the sciences. This fully updated edition of A Student's Guide to Python for Physical Modeling aims to help you, the student, teach yourself enough of the Python programming language to get started with physical modeling. You will learn how to install an open-source Python programming environment and use it to accomplish many common scientific computing tasks: importing, exporting, and visualizing data; numerical analysis; and simulation. No prior programming experience is assumed. This tutorial focuses on fundamentals and introduces a wide range of useful techniques, including: Basic Python programming and scripting Numerical arrays Two- and three-dimensional graphics Monte Carlo simulations Numerical methods, including solving ordinary differential equations Image processing Animation Numerous code samples and exercises--with solutions—illustrate new ideas as they are introduced. Web-based resources also accompany this guide and include code samples, data sets, and more. This current edition brings the discussion of the Python language, Spyder development environment, and Anaconda distribution up to date. In addition, a new appendix introduces Jupyter notebooks.

Python kinderleicht!

Einfach programmieren lernen – nicht nur für Kids

Author: Jason Briggs

Publisher: dpunkt.verlag

ISBN: 3864919053

Category: Computers

Page: 326

View: 5562

Python ist eine leistungsfähige, moderne Programmiersprache. Sie ist einfach zu erlernen und macht Spaß in der Anwendung – mit diesem Buch umso mehr! »Python kinderleicht" macht die Sprache lebendig und zeigt Dir (und Deinen Eltern) die Welt der Programmierung. Jason R. Briggs führt Dich Schritt für Schritt durch die Grundlagen von Python. Du experimentierst mit einzigartigen (und oft urkomischen) Beispielprogrammen, bei denen es um gefräßige Monster, Geheimagenten oder diebische Raben geht. Neue Begriffe werden erklärt, der Programmcode ist farbig dargestellt, strukturiert und mit Erklärungen versehen. Witzige Abbildungen erhöhen den Lernspaß. Jedes Kapitel endet mit Programmier-Rätseln, an denen Du das Gelernte üben und Dein Verständnis vertiefen kannst. Am Ende des Buches wirst Du zwei komplette Spiele programmiert haben: einen Klon des berühmten »Pong" und »Herr Strichmann rennt zum Ausgang" – ein Plattformspiel mit Sprüngen, Animation und vielem mehr. Indem Du Seite für Seite neue Programmierabenteuer bestehst, wirst Du immer mehr zum erfahrenen Python-Programmierer. - Du lernst grundlegende Datenstrukturen wie Listen, Tupel und Maps kennen. - Du erfährst, wie man mit Funktionen und Modulen den Programmcode organisieren und wiederverwenden kann. - Du wirst mit Kontrollstrukturen wie Schleifen und bedingten Anweisungen vertraut und lernst, mit Objekten und Methoden umzugehen. - Du zeichnest Formen mit dem Python-Modul Turtle und erstellst Spiele, Animationen und andere grafische Wunder mit tkinter. Und: »Python kinderleicht" macht auch für Erwachsene das Programmierenlernen zum Kinderspiel! Alle Programme findest Du auch zum Herunterladen auf der Website!

Data Science Programming In Python

Author: Anita Raichand

Publisher: Lulu Press, Inc

ISBN: 1365336557

Category: Computers

Page: N.A

View: 1701

Learn Data Science Programming in Python including munging, aggregating, and visualizing data.

Versionskontrolle mit Git

Author: Jon Loeliger

Publisher: O'Reilly Germany

ISBN: 389721945X

Category:

Page: 338

View: 9473

Git wurde von keinem Geringeren als Linus Torvalds ins Leben gerufen. Sein Ziel: die Zusammenarbeit der in aller Welt verteilten Entwickler des Linux-Kernels zu optimieren. Mittlerweile hat das enorm schnelle und flexible System eine groe Fangemeinde gewonnen. Viele Entwickler ziehen es zentralisierten Systemen vor, und zahlreiche bekannte Entwicklungsprojekte sind schon auf Git umgestiegen. Verstandliche Einfuhrung: Wer Git einsetzen und dabei grotmoglichen Nutzen aus seinen vielseitigen Funktionen ziehen mochte, findet in diesem Buch einen idealen Begleiter. Versionskontrolle mit Git fuhrt grundlich und gut verstandlich in die leistungsstarke Open Source-Software ein und demonstriert ihre vielfaltigen Einsatzmoglichkeiten. Auf dieser Basis kann der Leser Git schon nach kurzer Zeit produktiv nutzen und optimal auf die Besonderheiten seines Projekts abstimmen. Insider-Tipps aus erster Hand: Jon Loeliger, der selbst zum Git-Entwicklerteam gehort, lasst den Leser tief ins Innere des Systems blicken, so dass er ein umfassendes Verstandnis seiner internen Datenstrukturen und Aktionen erlangt. Neben alltaglicheren Szenarios behandelt Loeliger auch fortgeschrittene Themen wie die Verwendung von Hooks zum Automatisieren von Schritten, das Kombinieren von mehreren Projekten und Repositories zu einem Superprojekt sowie die Arbeit mit Subversion-Repositories in Git-Projekten.

Scientific Computing with Python 3

Author: Claus Fuhrer,Jan Erik Solem,Olivier Verdier

Publisher: Packt Publishing Ltd

ISBN: 1786463644

Category: Computers

Page: 332

View: 5954

An example-rich, comprehensive guide for all of your Python computational needs About This Book Your ultimate resource for getting up and running with Python numerical computations Explore numerical computing and mathematical libraries using Python 3.x code with SciPy and NumPy modules A hands-on guide to implementing mathematics with Python, with complete coverage of all the key concepts Who This Book Is For This book is for anyone who wants to perform numerical and mathematical computations in Python. It is especially useful for developers, students, and anyone who wants to use Python for computation. Readers are expected to possess basic a knowledge of scientific computing and mathematics, but no prior experience with Python is needed. What You Will Learn The principal syntactical elements of Python The most important and basic types in Python The essential building blocks of computational mathematics, linear algebra, and related Python objects Plot in Python using matplotlib to create high quality figures and graphics to draw and visualize your results Define and use functions and learn to treat them as objects How and when to correctly apply object-oriented programming for scientific computing in Python Handle exceptions, which are an important part of writing reliable and usable code Two aspects of testing for scientific programming: Manual and Automatic In Detail Python can be used for more than just general-purpose programming. It is a free, open source language and environment that has tremendous potential for use within the domain of scientific computing. This book presents Python in tight connection with mathematical applications and demonstrates how to use various concepts in Python for computing purposes, including examples with the latest version of Python 3. Python is an effective tool to use when coupling scientific computing and mathematics and this book will teach you how to use it for linear algebra, arrays, plotting, iterating, functions, polynomials, and much more. Style and approach This book takes a concept-based approach to the language rather than a systematic introduction. It is a complete Python tutorial and introduces computing principles, using practical examples to and showing you how to correctly implement them in Python. You'll learn to focus on high-level design as well as the intricate details of Python syntax. Rather than providing canned problems to be solved, the exercises have been designed to inspire you to think about your own code and give you real-world insight.

Hello World!

Programmieren für Kids und andere Anfänger

Author: Warren Sande,Carter Sande

Publisher: Carl Hanser Verlag GmbH Co KG

ISBN: 3446438149

Category: Computers

Page: 501

View: 1930

HELLO WORLD// - Alle Erklärungen der Konzepte in einfacher Sprache - Sehr viele Bilder, Cartoons und lustige Beispiele - Umfassende Fragen und Aufgaben zum Üben und Lernen - Farbig illustriert In diesem Buch lernst Du, mit dem Computer in seiner Sprache zu sprechen. Willst du ein Spiel erfinden? Eine Firma gründen? Ein wichtiges Problem lösen? Als ersten Schritt lernst Du, eigene Programme zu schreiben. Programmieren ist eine tolle Herausforderung, und dieses Buch macht Dir den Einstieg leicht. Diese neue Ausgabe von Hello World! zeigt Dir in einfacher und ansprechender Weise die Welt der Computerprogrammierung. Warren Sande hat es gemeinsam mit seinem Sohn Carter geschrieben, und sie haben sich auch viele lustige Beispiele ausgedacht, mit denen Du prima lernen kannst. Das Buch wurde von Pädagogen überarbeitet und eignet sich für Kinder genauso wie für ihre Eltern. Du brauchst keine Programmierkenntnisse mitzubringen, sondern nur zu wissen, wie man einen Computer bedient. Wenn Du ein Programm starten und eine Datei speichern kannst, reicht das schon! Hello World! arbeitet mit Python. Diese Programmiersprache ist besonders leicht zu erlernen. Mit den humorvollen Beispielen lernst Du die Grundlagen des Programmierens kennen, wie z.B. Schleifen, Entscheidungen, Eingaben und Ausgaben, Datenstrukturen, Grafiken und vieles mehr. AUS DEM INHALT // Speicher und Variablen // Datentypen // GUIs – Grafische Benutzeroberflächen // Immer diese Entscheidungen // Schleifen // Nur für dich – Kommentare // Geschachtelte und variable Schleifen // Listen und Wörterbücher // Funktionen // Objekte // Module // Sprites und Kollisionserkennung // Ereignisse // Sound // Ausgabeformatierung und Strings // Das Zufallsprinzip // Computersimulationen

Die Berechnung der Zukunft

Warum die meisten Prognosen falsch sind und manche trotzdem zutreffen - Der New York Times Bestseller

Author: Nate Silver

Publisher: Heyne Verlag

ISBN: 3641112702

Category: Business & Economics

Page: 656

View: 8045

Zuverlässige Vorhersagen sind doch möglich! Nate Silver ist der heimliche Gewinner der amerikanischen Präsidentschaftswahlen 2012: ein begnadeter Statistiker, als »Prognose-Popstar« und »Wundernerd« weltberühmt geworden. Er hat die Wahlergebnisse aller 50 amerikanischen Bundesstaaten absolut exakt vorausgesagt – doch damit nicht genug: Jetzt zeigt Nate Silver, wie seine Prognosen in Zukunft Terroranschläge, Umweltkatastrophen und Finanzkrisen verhindern sollen. Gelingt ihm die Abschaffung des Zufalls? Warum werden Wettervorhersagen immer besser, während die Terrorattacken vom 11.09.2001 niemand kommen sah? Warum erkennen Ökonomen eine globale Finanzkrise nicht einmal dann, wenn diese bereits begonnen hat? Das Problem ist nicht der Mangel an Informationen, sondern dass wir die verfügbaren Daten nicht richtig deuten. Zuverlässige Prognosen aber würden uns helfen, Zufälle und Ungewissheiten abzuwehren und unser Schicksal selbst zu bestimmen. Nate Silver zeigt, dass und wie das geht. Erstmals wendet er seine Wahrscheinlichkeitsrechnung nicht nur auf Wahlprognosen an, sondern auf die großen Probleme unserer Zeit: die Finanzmärkte, Ratingagenturen, Epidemien, Erdbeben, den Klimawandel, den Terrorismus. In all diesen Fällen gibt es zahlreiche Prognosen von Experten, die er überprüft – und erklärt, warum sie meist falsch sind. Gleichzeitig schildert er, wie es gelingen kann, im Rauschen der Daten die wesentlichen Informationen herauszufiltern. Ein unterhaltsamer und spannender Augenöffner!

Find eBook