Very hot area with a wide range of applications; Gives complete numerical analysis and recipes, which will enable readers to quickly apply the techniques to real problems; Includes two new techniques pioneered by Osher and Fedkiw; Osher and Fedkiw are internationally well-known researchers in this area

Here is, for the first time, a book that clearly explains and applies new level set methods to problems and applications in computer vision, graphics, and imaging. It is an essential compilation of survey chapters from the leading researchers in the field. The applications of the methods are emphasized.

This new edition of Professor Sethian's successful text provides an introduction to level set methods and fast marching methods, which are powerful numerical techniques for analyzing and computing interface motion in a host of settings. They rely on a fundamental shift in how one views moving boundaries; rethinking the natural geometric Lagrangian perspective and exchanging it for an Eulerian, initial value partial differential equation perspective. For this edition, the collection of applications provided in the text has been expanded, including examples from physics, chemistry, fluid mechanics, combustion, image processing, material science, fabrication of microelectronic components, computer vision, computer-aided design, and optimal control theory. This book will be a useful resource for mathematicians, applied scientists, practising engineers, computer graphic artists, and anyone interested in the evolution of boundaries and interfaces.

This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas.

Contemporary engineering design is heavily based on computer simulations. Accurate, high-fidelity simulations are used not only for design verification but, even more importantly, to adjust parameters of the system to have it meet given performance requirements. Unfortunately, accurate simulations are often computationally very expensive with evaluation times as long as hours or even days per design, making design automation using conventional methods impractical. These and other problems can be alleviated by the development and employment of so-called surrogates that reliably represent the expensive, simulation-based model of the system or device of interest but they are much more reasonable and analytically tractable. This volume features surrogate-based modeling and optimization techniques, and their applications for solving difficult and computationally expensive engineering design problems. It begins by presenting the basic concepts and formulations of the surrogate-based modeling and optimization paradigm and then discusses relevant modeling techniques, optimization algorithms and design procedures, as well as state-of-the-art developments. The chapters are self-contained with basic concepts and formulations along with applications and examples. The book will be useful to researchers in engineering and mathematics, in particular those who employ computationally heavy simulations in their design work.

"Implicit surfaces" is a leading edge method for modeling that enables the production of certain complex surfaces that are not achievable by popular methods. They typically create very expressive animations providing for the visualization of soft deformable objects like organic structures and liquids. This practical guide provides a thorough description, with examples, of all the major aspects of implicit surface modeling and visualization.

The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.

A unified and accessible introduction to the basic theory of finite difference schemes.

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

This book takes readers on a tour through modern methods in image analysis and reconstruction based on level set and PDE techniques, the major focus being on morphological and geometric structures in images. The aspects covered include edge-sharpening image reconstruction and denoising, segmentation and shape analysis in images, and image matching. For each, the lecture notes provide insights into the basic analysis of modern variational and PDE-based techniques, as well as computational aspects and applications.

This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.

Variational Methods in Image Processing presents the principles, techniques, and applications of variational image processing. The text focuses on variational models, their corresponding Euler–Lagrange equations, and numerical implementations for image processing. It balances traditional computational models with more modern techniques that solve the latest challenges introduced by new image acquisition devices. The book addresses the most important problems in image processing along with other related problems and applications. Each chapter presents the problem, discusses its mathematical formulation as a minimization problem, analyzes its mathematical well-posedness, derives the associated Euler–Lagrange equations, describes the numerical approximations and algorithms, explains several numerical results, and includes a list of exercises. MATLAB® codes are available online. Filled with tables, illustrations, and algorithms, this self-contained textbook is primarily for advanced undergraduate and graduate students in applied mathematics, scientific computing, medical imaging, computer vision, computer science, and engineering. It also offers a detailed overview of the relevant variational models for engineers, professionals from academia, and those in the image processing industry.

This volume contains 18 invited papers by members and guests of the former Sonderforschungsbereich in Bonn (SFB 72) who, over the years, collaborated on the research group "Solution of PDE's and Calculus of Variations". The emphasis is on existence and regularity results, on special equations of mathematical physics and on scattering theory.

In many areas of mathematics, science and engineering, from computer graphics to inverse methods to signal processing, it is necessary to estimate parameters, usually multidimensional, by approximation and interpolation. Radial basis functions are a powerful tool which work well in very general circumstances and so are becoming of widespread use as the limitations of other methods, such as least squares, polynomial interpolation or wavelet-based, become apparent. The author's aim is to give a thorough treatment from both the theoretical and practical implementation viewpoints. For example, he emphasises the many positive features of radial basis functions such as the unique solvability of the interpolation problem, the computation of interpolants, their smoothness and convergence and provides a careful classification of the radial basis functions into types that have different convergence. A comprehensive bibliography rounds off what will prove a very valuable work.

This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied dynamical systems, nonlinear differential equations, and mathematical biology. He is the author of more than 100 papers, and his research has played an important role in the development of the theory and applications of monotone dynamical systems, periodic and almost periodic semiflows, uniform persistence, and basic reproduction ratios.

Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.

Mathematics of Computing -- General.