Search Results: mathematical-techniques-an-introduction-for-the-engineering-physical-and-mathematical-sciences

Mathematical Techniques

An Introduction for the Engineering, Physical, and Mathematical Sciences

Author: D. Dominic William Jordan,Peter Smith

Publisher: Oxford University Press

ISBN: N.A

Category: Mathematics

Page: 788

View: 4015

Undergraduate students of engineering, science, and mathematics must quickly master a variety of mathematical methods, although many of these students do not have strong mathematics backgrounds. In this well-received book, now in its second edition, the authors use their extensive experience with diverse groups of students to provide an accessible introduction to mathematical techniques. They start at the elementary level and proceed to cover the full range of topics typically encountered by beginning students: BL Analytic geometry, vector algebra, vector fields (div and curl), differentiation, and integration. BL Complex numbers, matrix operations, and linear systems of equations. BL Differential equations and first-order linear systems, functions of more than one variable, double integrals, and line integrals. BL Laplace transforms, Fourier series and Fourier transforms. BL Probability and statistics. Incorporating many suggestions from readers, this new edition has expanded discussions of vectors and new chapters on Fourier series and on probability and statistics. The emphasis throughout is on understanding concepts through well-chosen examples, and the book includes over 500 fully worked problems. As far as is possible chapter topics are self-contained so that a student only needing to master certain techniques can omit others without trouble. The generously illustrated text also includes simple numerical processes which lead to examples and projects for computation (particularly with Mathematica), and contains a large number of exercises (with answers) to reinforce the material. These features combine to make this book an ideal starting point for students entering the sciences.

Mathematical Techniques

An Introduction for the Engineering, Physical, and Mathematical Sciences

Author: Dominic William Jordan,Peter Smith

Publisher: Oxford University Press, USA

ISBN: 9780199249725

Category: Mathematics

Page: 862

View: 9430

Many students beginning their engineering, science and mathematics courses need a book on mathematical methods. This textbook offers an accessible and comprehensive grounding in many of the mathematical techniques required in the early stages of an engineering or science degree, and also forthe routine methods needed by first and second year mathematics students. Mathematical Techniques starts by revising work from pre-university level before developing the more advanced material which students will encounter during their undergraduate studies.The contents of the book has been fully revised for this, the third edition. The first chapter on standard techniques, has been rewritten and expanded to serve the increasingly diverse needs of students. The Fourier transform now has its own chapter; a simplified approach is adopted, and diffractiontheory, together with supporting material on wave motion, is included. Many changes enhancing clarity have been made in other chapters. The chapter on projects using Mathematica has been extended to cover these changes: the associated programs are freely available on Keele University, MathematicsDepartment web site: www.keele.ac.uk/depts/ma/ . Chapters and sections are designed to be largely self-contained, allowing students ot concentrate on the specific methods they need to master and use. The book contains nearly 500 worked examples, more than 2000 problems (with selected answers), andover 120 computing projects. The text is accessible, widely illustrated, and stands as an ideal introduction on mathematical methods at university level.

Mathematical Techniques

An Introduction for the Engineering, Physical, and Mathematical Sciences

Author: Dominic Jordan,Peter Smith

Publisher: OUP Oxford

ISBN: 9780199282012

Category: Mathematics

Page: 1008

View: 5308

Mathematical Techniques provides a complete course in mathematics, covering all the essential topics with which a physical sciences or engineering student should be familiar. It introduces and builds on concepts in a progressive, carefully-layered way, and features over 2000 end of chapter problems, plus additional self-check questions.

Mathematical Methods for Engineers and Scientists 3

Fourier Analysis, Partial Differential Equations and Variational Methods

Author: Kwong-Tin Tang

Publisher: Springer Science & Business Media

ISBN: 3540446958

Category: Science

Page: 440

View: 7946

Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous examples, completely worked out, together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable in using advanced mathematical tools in junior, senior, and beginning graduate courses.

Mathematical Methods for the Physical Sciences

An Informal Treatment for Students of Physics and Engineering

Author: K. F. Riley

Publisher: Cambridge University Press

ISBN: 9780521098397

Category: Mathematics

Page: 533

View: 1360

Designed for first and second year undergraduates at universities and polytechnics, as well as technical college students.

Tensoranalysis

Author: Heinz Schade,Klaus Neemann

Publisher: Walter de Gruyter

ISBN: 3110213214

Category: Science

Page: 462

View: 674

Dieses Lehrbuch stellt eine umfassende und leicht verständliche Einführung in die Tensoranalysis dar, die hier als Oberbegriff von klassischer Tensoranalysis und Tensoralgebra zu verstehen ist und die in vielen Anwendungen der Physik und der Ingenieurwissenschaften benötigt wird. Es vermittelt die nötigen algebraischen Hilfsmittel und enthält zahlreiche Übungsaufgaben mit Lösungen, so dass es sich auch für ein Selbststudium eignet.

Finite-Elemente-Methoden

Author: Klaus-Jürgen Bathe

Publisher: Springer Verlag

ISBN: 9783540668060

Category: Technology & Engineering

Page: 1253

View: 6654

Dieses Lehr- und Handbuch behandelt sowohl die elementaren Konzepte als auch die fortgeschrittenen und zukunftsweisenden linearen und nichtlinearen FE-Methoden in Statik, Dynamik, Festkörper- und Fluidmechanik. Es wird sowohl der physikalische als auch der mathematische Hintergrund der Prozeduren ausführlich und verständlich beschrieben. Das Werk enthält eine Vielzahl von ausgearbeiteten Beispielen, Rechnerübungen und Programmlisten. Als Übersetzung eines erfolgreichen amerikanischen Lehrbuchs hat es sich in zwei Auflagen auch bei den deutschsprachigen Ingenieuren etabliert. Die umfangreichen Änderungen gegenüber der Vorauflage innerhalb aller Kapitel - vor allem aber der fortgeschrittenen - spiegeln die rasche Entwicklung innerhalb des letzten Jahrzehnts auf diesem Gebiet wieder.

Biophysical Techniques

Author: Iain Campbell

Publisher: Oxford University Press

ISBN: 0199642141

Category: Medical

Page: 353

View: 1691

Biophysical Techniques explains in a readily-accessible way the basics of the various biophysical methods available so students can understand the principles behind the different methods used, and begin to appreciate which tools can be used to probe different biological questions, and the pros and cons of each.

Klassische Mechanik

Author: Herbert Goldstein,Charles P. Poole, Jr.,John L. Safko, Sr.

Publisher: John Wiley & Sons

ISBN: 3527662073

Category: Science

Page: 700

View: 7512

Der Goldstein gehört zu den Standardwerken für die Vorlesung in Klassischer Mechanik, die Pflichtvorlesung und Teil des Theorie-Lehrplans jedes Physik-Studienganges ist. Für diese aktuelle Ausgabe haben Charles Poole und John Safko die Texte überarbeitet und neueste Themen, Anwendungen und Notationen eingearbeitet und sind damit auf moderne Trends in der Theoretischen Mechanik eingegangen. Neue numerische Übungen verhelfen den Studenten zur Fähigkeit, Computeranwendungen für die Lösung von Physikproblemen zu benutzen. Mathematische Techniken werden detailliert eingeführt, so daß der Text auch für Studenten ohne den entsprechenden Hintergrund der Theoretischen Mechanik verständlich ist.

Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition

Author: K. F. Riley,M. P. Hobson

Publisher: Cambridge University Press

ISBN: 9780521679732

Category: Education

Page: 534

View: 4325

Solutions manual contains complete worked solutions to half of the problems in Mathematical Methods for Physics and Engineering, Third Edition.

Relativität, Gruppen, Teilchen

Spezielle Relativitätstheorie als Grundlage der Feld- und Teilchenphysik

Author: R.U. Sexl,H.K. Urbantke

Publisher: Springer-Verlag

ISBN: 3709122465

Category: Science

Page: 301

View: 2037

Mathematik und Technologie

Author: Christiane Rousseau,Yvan Saint-Aubin

Publisher: Springer-Verlag

ISBN: 3642300928

Category: Mathematics

Page: 609

View: 7447

Zusammen mit der Abstraktion ist die Mathematik das entscheidende Werkzeug für technologische Innovationen. Das Buch bietet eine Einführung in zahlreiche Anwendungen der Mathematik auf dem Gebiet der Technologie. Meist werden moderne Anwendungen dargestellt, die heute zum Alltag gehören. Die mathematischen Grundlagen für technologische Anwendungen sind dabei relativ elementar, was die Leistungsstärke der mathematischen Modellbildung und der mathematischen Hilfsmittel beweist. Mit zahlreichen originellen Übungen am Ende eines jeden Kapitels.

Fouriertransformation für Fußgänger

Author: N.A

Publisher: Springer-Verlag

ISBN: 3322948676

Category: Mathematics

Page: 168

View: 5337

Essential Mathematical Methods for the Physical Sciences

Author: K. F. Riley,M. P. Hobson

Publisher: Cambridge University Press

ISBN: 1139492942

Category: Science

Page: N.A

View: 1098

The mathematical methods that physical scientists need for solving substantial problems in their fields of study are set out clearly and simply in this tutorial-style textbook. Students will develop problem-solving skills through hundreds of worked examples, self-test questions and homework problems. Each chapter concludes with a summary of the main procedures and results and all assumed prior knowledge is summarized in one of the appendices. Over 300 worked examples show how to use the techniques and around 100 self-test questions in the footnotes act as checkpoints to build student confidence. Nearly 400 end-of-chapter problems combine ideas from the chapter to reinforce the concepts. Hints and outline answers to the odd-numbered problems are given at the end of each chapter, with fully-worked solutions to these problems given in the accompanying Student Solutions Manual. Fully-worked solutions to all problems, password-protected for instructors, are available at www.cambridge.org/essential.

Turbulence: An Introduction for Scientists and Engineers

Author: P.A. Davidson

Publisher: OUP Oxford

ISBN: 0191589853

Category: Mathematics

Page: 680

View: 2859

Based on a taught by the author at the University of Cambridge, this comprehensive text on turbulence and fluid dynamics is aimed at year 4 undergraduates and graduates in applied mathematics, physics, and engineering, and provides an ideal reference for industry professionals and researchers. It bridges the gap between elementary accounts of turbulence found in undergraduate texts and more rigorous accounts given in monographs on the subject. Containing many examples, the author combines the maximum of physical insight with the minimum of mathematical detail where possible. The text is highly illustrated throughout, and includes colour plates; required mathematical techniques are covered in extensive appendices. The text is divided into three parts: Part I consists of a traditional introduction to the classical aspects of turbulence, the nature of turbulence, and the equations of fluid mechanics. Mathematics is kept to a minimum, presupposing only an elementary knowledge of fluid mechanics and statistics. Part II tackles the problem of homogeneous turbulence with a focus on describing the phenomena in real space. Part III covers certain special topics rarely discussed in introductory texts. Many geophysical and astrophysical flows are dominated by the effects of body forces, such as buoyancy, Coriolis and Lorentz forces. Moreover, certain large-scale flows are approximately two-dimensional and this has led to a concerted investigation of two-dimensional turbulence over the last few years. Both the influence of body forces and two-dimensional turbulence are discussed.

Distributionen Und Hilbertraumoperatoren

Mathematische Methoden Der Physik

Author: Philippe Blanchard,Erwin Brüning

Publisher: Springer

ISBN: 9783211825075

Category: Science

Page: 375

View: 5248

Das Buch bietet eine Einführung in die zum Studium der Theoretischen Physik notwendigen mathematischen Grundlagen. Der erste Teil des Buches beschäftigt sich mit der Theorie der Distributionen und vermittelt daneben einige Grundbegriffe der linearen Funktionalanalysis. Der zweite Teil baut darauf auf und gibt eine auf das Wesentliche beschränkte Einführung in die Theorie der linearen Operatoren in Hilbert-Räumen. Beide Teile werden von je einer Übersicht begleitet, die die zentralen Ideen und Begriffe knapp erläutert und den Inhalt kurz beschreibt. In den Anhängen werden einige grundlegende Konstruktionen und Konzepte der Funktionalanalysis dargestellt und wichtige Konsequenzen entwickelt.

Mathematical Methods for Physics and Engineering

A Comprehensive Guide

Author: K. F. Riley,M. P. Hobson,S. J. Bence

Publisher: Cambridge University Press

ISBN: 1139450999

Category: Science

Page: N.A

View: 6045

The third edition of this highly acclaimed undergraduate textbook is suitable for teaching all the mathematics for an undergraduate course in any of the physical sciences. As well as lucid descriptions of all the topics and many worked examples, it contains over 800 exercises. New stand-alone chapters give a systematic account of the 'special functions' of physical science, cover an extended range of practical applications of complex variables, and give an introduction to quantum operators. Further tabulations, of relevance in statistics and numerical integration, have been added. In this edition, half of the exercises are provided with hints and answers and, in a separate manual available to both students and their teachers, complete worked solutions. The remaining exercises have no hints, answers or worked solutions and can be used for unaided homework; full solutions are available to instructors on a password-protected web site, www.cambridge.org/9780521679718.

Mathematical Methods

For Students of Physics and Related Fields

Author: Sadri Hassani

Publisher: Springer Science & Business Media

ISBN: 9780387989587

Category: Mathematics

Page: 659

View: 1333

Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.

Mathematical Methods for the Natural and Engineering Sciences

Author: Ronald E. Mickens

Publisher: World Scientific

ISBN: 9789812387509

Category: Technology & Engineering

Page: 509

View: 2531

This book provides a variety of methods required for the analysis and solution of equations which arise in the modeling of phenomena from the natural and engineering sciences. It can be used productively by both undergraduate and graduate students, as well as others who need to learn and understand these techniques. A detailed discussion is also presented for several topics that are usually not included in standard textbooks at this level: qualitative methods for differential equations, dimensionalization and scaling, elements of asymptotics, difference equations, and various perturbation methods. Each chapter contains a large number of worked examples and provides references to the appropriate literature.

Mathematical Techniques in Crystallography and Materials Science

Author: Edward Prince

Publisher: Springer Science & Business Media

ISBN: 3642187110

Category: Science

Page: 224

View: 340

This practical guide and reference serves as a unified source book for students and professionals, and it provides a solid basis for further studies in more specialized literature. Based Prince’s decades of practical experience, it can be recommended as an introduction for beginners in crystallography, as a refresher and handy guide for crystallographers working on specific problems, and as a reference for others seeking a dictionary of basic mathematical and crystallographic terms. The third edition further clarifies key points.

Find eBook