Search Results: matroids-a-geometric-introduction

Matroids: A Geometric Introduction

Author: Gary Gordon,Jennifer McNulty

Publisher: Cambridge University Press

ISBN: 1139536087

Category: Mathematics

Page: N.A

View: 3956

Matroid theory is a vibrant area of research that provides a unified way to understand graph theory, linear algebra and combinatorics via finite geometry. This book provides the first comprehensive introduction to the field which will appeal to undergraduate students and to any mathematician interested in the geometric approach to matroids. Written in a friendly, fun-to-read style and developed from the authors' own undergraduate courses, the book is ideal for students. Beginning with a basic introduction to matroids, the book quickly familiarizes the reader with the breadth of the subject, and specific examples are used to illustrate the theory and to help students see matroids as more than just generalizations of graphs. Over 300 exercises are included, with many hints and solutions so students can test their understanding of the materials covered. The authors have also included several projects and open-ended research problems for independent study.

Matroid Theory

AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory, July 2-6, 1995, University of Washington, Seattle

Author: Joseph Edmond Bonin

Publisher: American Mathematical Soc.

ISBN: 0821805088

Category: Mathematics

Page: 418

View: 7932

This volume contains the proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory held at the University of Washington, Seattle. The book features three comprehensive surveys that bring the reader to the forefront of research in matroid theory. Joseph Kung's encyclopedic treatment of the critical problem traces the development of this problem from its origins through its numerous links with other branches of mathematics to the current status of its many aspects. James Oxley's survey of the role of connectivity and structure theorems in matroid theory stresses the influence of the Wheels and Whirls Theorem of Tutte and the Splitter Theorem of Seymour. Walter Whiteley's article unifies applications of matroid theory to constrained geometrical systems, including the rigidity of bar-and-joint frameworks, parallel drawings, and splines. These widely accessible articles contain many new results and directions for further research and applications. The surveys are complemented by selected short research papers. The volume concludes with a chapter of open problems. Features self-contained, accessible surveys of three active research areas in matroid theory; many new results; pointers to new research topics; a chapter of open problems; mathematical applications; and applications and connections to other disciplines, such as computer-aided design and electrical and structural engineering.

Matroid Theory

Author: D. J. A. Welsh

Publisher: Courier Corporation

ISBN: 0486474399

Category: Mathematics

Page: 433

View: 6549

The theory of matroids connects disparate branches of combinatorial theory and algebra such as graph and lattice theory, combinatorial optimization, and linear algebra. This text describes standard examples and investigation results, and it uses elementary proofs to develop basic matroid properties before advancing to a more sophisticated treatment. 1976 edition.

Oriented Matroids

Author: Anders Björner

Publisher: Cambridge University Press

ISBN: 9780521777506

Category: Mathematics

Page: 548

View: 9146

First comprehensive, accessible account; second edition has expanded bibliography and a new appendix surveying recent research.

Combinatorial Optimization

Networks and Matroids

Author: Eugene Lawler

Publisher: Courier Corporation

ISBN: 048614366X

Category: Mathematics

Page: 400

View: 9831

Perceptive text examines shortest paths, network flows, bipartite and nonbipartite matching, matroids and the greedy algorithm, matroid intersections, and the matroid parity problems. Suitable for courses in combinatorial computing and concrete computational complexity.

Diagram Geometry

Related to Classical Groups and Buildings

Author: Francis Buekenhout,Arjeh M. Cohen

Publisher: Springer Science & Business Media

ISBN: 3642344534

Category: Mathematics

Page: 594

View: 4486

This book provides a self-contained introduction to diagram geometry. Tight connections with group theory are shown. It treats thin geometries (related to Coxeter groups) and thick buildings from a diagrammatic perspective. Projective and affine geometry are main examples. Polar geometry is motivated by polarities on diagram geometries and the complete classification of those polar geometries whose projective planes are Desarguesian is given. It differs from Tits' comprehensive treatment in that it uses Veldkamp's embeddings. The book intends to be a basic reference for those who study diagram geometry. Group theorists will find examples of the use of diagram geometry. Light on matroid theory is shed from the point of view of geometry with linear diagrams. Those interested in Coxeter groups and those interested in buildings will find brief but self-contained introductions into these topics from the diagrammatic perspective. Graph theorists will find many highly regular graphs. The text is written so graduate students will be able to follow the arguments without needing recourse to further literature. A strong point of the book is the density of examples.

Interior Lighting for Designers

Author: Gary Gordon

Publisher: John Wiley & Sons

ISBN: 111841506X

Category: Architecture

Page: 352

View: 8883

This revised edition of the successful primer thoroughly covers fundamentals of lighting design, and also serves as a handy reference for professional designers. The Fifth Edition is more comprehensive than ever, with new information on LED, energy efficiency, and other current issues. In addition, it includes more information for drawing ceiling floor plans and the application of designs to specific types of interiors projects. Considered a "key reference" for the Lighting Certified exam, no other text combines both technical and creative aspects of lighting design for beginners and novice designers.

Matrices and Matroids for Systems Analysis

Author: Kazuo Murota

Publisher: Springer Science & Business Media

ISBN: 3642039944

Category: Mathematics

Page: 483

View: 1156

A matroid is an abstract mathematical structure that captures combinatorial properties of matrices. This book offers a unique introduction to matroid theory, emphasizing motivations from matrix theory and applications to systems analysis. This book serves also as a comprehensive presentation of the theory and application of mixed matrices, developed primarily by the present author in the 1990's. A mixed matrix is a convenient mathematical tool for systems analysis, compatible with the physical observation that "fixed constants" and "system parameters" are to be distinguished in the description of engineering systems. This book will be extremely useful to graduate students and researchers in engineering, mathematics and computer science. From the reviews: "...The book has been prepared very carefully, contains a lot of interesting results and is highly recommended for graduate and postgraduate students." András Recski, Mathematical Reviews Clippings 2000m:93006

Symmetries in Graphs, Maps, and Polytopes

5th SIGMAP Workshop, West Malvern, UK, July 2014

Author: Jozef Širáň,Robert Jajcay

Publisher: Springer

ISBN: 3319304518

Category: Mathematics

Page: 332

View: 513

This volume contains seventeen of the best papers delivered at the SIGMAP Workshop 2014, representing the most recent advances in the field of symmetries of discrete objects and structures, with a particular emphasis on connections between maps, Riemann surfaces and dessins d’enfant.Providing the global community of researchers in the field with the opportunity to gather, converse and present their newest findings and advances, the Symmetries In Graphs, Maps, and Polytopes Workshop 2014 was the fifth in a series of workshops. The initial workshop, organized by Steve Wilson in Flagstaff, Arizona, in 1998, was followed in 2002 and 2006 by two meetings held in Aveiro, Portugal, organized by Antonio Breda d’Azevedo, and a fourth workshop held in Oaxaca, Mexico, organized by Isabel Hubard in 2010.This book should appeal to both specialists and those seeking a broad overview of what is happening in the area of symmetries of discrete objects and structures.iv>

Combinatorial Geometries

Author: Neil White

Publisher: Cambridge University Press

ISBN: 9780521333399

Category: Mathematics

Page: 212

View: 6192

This book is a continuation of Theory of Matroids (also edited by Neil White), and again consists of a series of related surveys that have been contributed by authorities in the area. The volume begins with three chapters on coordinatisations, followed by one on matching theory. The next two deal with transversal and simplicial matroids. These are followed by studies of the important matroid invariants. The final chapter deals with matroids in combinatorial optimisation, a topic of much current interest. The whole volume has been carefully edited to ensure a uniform style and notation throughout, and to make a work that can be used as a reference or as an introductory textbook for graduate students or non-specialists.

Topics in Matroid Theory

Author: Leonidas S. Pitsoulis

Publisher: Springer Science & Business Media

ISBN: 1461489571

Category: Mathematics

Page: 127

View: 7851

Topics in Matroid Theory provides a brief introduction to matroid theory with an emphasis on algorithmic consequences.Matroid theory is at the heart of combinatorial optimization and has attracted various pioneers such as Edmonds, Tutte, Cunningham and Lawler among others. Matroid theory encompasses matrices, graphs and other combinatorial entities under a common, solid algebraic framework, thereby providing the analytical tools to solve related difficult algorithmic problems. The monograph contains a rigorous axiomatic definition of matroids along with other necessary concepts such as duality, minors, connectivity and representability as demonstrated in matrices, graphs and transversals. The author also presents a deep decomposition result in matroid theory that provides a structural characterization of graphic matroids, and show how this can be extended to signed-graphic matroids, as well as the immediate algorithmic consequences.

An Introduction to Algebraic and Combinatorial Coding Theory

Author: Ian F. Blake,Ronald C. Mullin

Publisher: Academic Press

ISBN: 1483260291

Category: Mathematics

Page: 242

View: 8406

An Introduction to Algebraic and Combinatorial Coding Theory focuses on the principles, operations, and approaches involved in the combinatorial coding theory, including linear transformations, chain groups, vector spaces, and combinatorial constructions. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on quadratic residues and codes, self-dual and quasicyclic codes, balanced incomplete block designs and codes, polynomial approach to coding, and linear transformations of vector spaces over finite fields. The text then examines coding and combinatorics, including chains and chain groups, equidistant codes, matroids, graphs, and coding, matroids, and dual chain groups. The manuscript also ponders on Möbius inversion formula, Lucas's theorem, and Mathieu groups. The publication is a valuable source of information for mathematicians and researchers interested in the combinatorial coding theory.

Computational Oriented Matroids

Equivalence Classes of Matrices Within a Natural Framework

Author: Jürgen Bokowski

Publisher: Cambridge University Press

ISBN: 0521849306

Category: Computers

Page: 323

View: 4013

Oriented matroids play the role of matrices in discrete geometry, when metrical properties, such as angles or distances, are neither required nor available. Thus they are of great use in such areas as graph theory, combinatorial optimization and convex geometry. The variety of applications corresponds to the variety of ways they can be defined. Each of these definitions corresponds to a differing data structure for an oriented matroid, and handling them requires computational support, best realised through a functional language. Haskell is used here, and, for the benefit of readers, the book includes a primer on it. The combination of concrete applications and computation, the profusion of illustrations, many in colour, and the large number of examples and exercises make this an ideal introductory text on the subject. It will also be valuable for self-study for mathematicians and computer scientists working in discrete and computational geometry.

A Primer for Undergraduate Research

From Groups and Tiles to Frames and Vaccines

Author: Aaron Wootton,Valerie Peterson,Christopher Lee

Publisher: Birkhäuser

ISBN: 3319660659

Category: Mathematics

Page: 313

View: 1905

This highly readable book aims to ease the many challenges of starting undergraduate research. It accomplishes this by presenting a diverse series of self-contained, accessible articles which include specific open problems and prepare the reader to tackle them with ample background material and references. Each article also contains a carefully selected bibliography for further reading. The content spans the breadth of mathematics, including many topics that are not normally addressed by the undergraduate curriculum (such as matroid theory, mathematical biology, and operations research), yet have few enough prerequisites that the interested student can start exploring them under the guidance of a faculty member. Whether trying to start an undergraduate thesis, embarking on a summer REU, or preparing for graduate school, this book is appropriate for a variety of students and the faculty who guide them.

Higher Combinatorics

Proceedings of the NATO Advanced Study Institute held in Berlin (West Germany), September 1–10, 1976

Author: M. Aigner

Publisher: Springer Science & Business Media

ISBN: 9401012202

Category: Mathematics

Page: 256

View: 6056

It is general consensus that Combinatorics has developed into a full-fledged mathematical discipline whose beginnings as a charming pastime have long since been left behind and whose great signifi cance for other branches of both pure and applied mathematics is only beginning to be realized. The last ten years have witnessed a tremendous outburst of activity both in relatively new fields such as Coding Theory and the Theory of Matroids as well as in' more time honored endeavors such as Generating Functions and the Inver sion Calculus. Although the number of text books on these subjects is slowly increasing, there is also a great need for up-to-date surveys of the main lines of research designed to aid the beginner and serve as a reference for the expert. It was the aim of the Advanced Study Institute "Higher Combinatorics" in Berlin, 1976, to help fulfill this need. There were five sections: I. Counting Theory, II. Combinatorial Set Theory and Order Theory, III. Matroids, IV. Designs and V. Groups and Coding Theory, with three principal lecturers in each section. Expanded versions of most lectures form the contents of this book. The Institute was designed to offer, especially to young researchers, a comprehen sive picture of the most interesting developments currently under way. It is hoped that these proceedings will serve the same purpose for a wider audience.

Combinatorial Optimization

Algorithms and Complexity

Author: Christos H. Papadimitriou,Kenneth Steiglitz

Publisher: Courier Corporation

ISBN: 0486320138

Category: Mathematics

Page: 528

View: 5865

This graduate-level text considers the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; local search heuristics for NP-complete problems, more. 1982 edition.

The Mathematical Theory of Coding

Author: Ian F. Blake,Ronald C. Mullin

Publisher: Academic Press

ISBN: 1483260593

Category: Mathematics

Page: 368

View: 6432

The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.

Matroid Applications

Author: Neil White

Publisher: Cambridge University Press

ISBN: 9780521381659

Category: Mathematics

Page: 363

View: 1566

This volume, the third in a sequence that began with The Theory of Matroids and Combinatorial Geometries, concentrates on the applications of matroid theory to a variety of topics from engineering (rigidity and scene analysis), combinatorics (graphs, lattices, codes and designs), topology and operations research (the greedy algorithm).

Pattern Recognition on Oriented Matroids

Author: Andrey O. Matveev

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110530848

Category:

Page: N.A

View: 9288

Introduction to Tropical Geometry

Author: Diane Maclagan,Bernd Sturmfels

Publisher: American Mathematical Soc.

ISBN: 0821851985

Category: Algebraic geometry -- Special varieties -- Toric varieties, Newton polyhedra

Page: 363

View: 8618

Tropical geometry is a combinatorial shadow of algebraic geometry, offering new polyhedral tools to compute invariants of algebraic varieties. It is based on tropical algebra, where the sum of two numbers is their minimum and the product is their sum. This turns polynomials into piecewise-linear functions, and their zero sets into polyhedral complexes. These tropical varieties retain a surprising amount of information about their classical counterparts. Tropical geometry is a young subject that has undergone a rapid development since the beginning of the 21st century. While establishing itself as an area in its own right, deep connections have been made to many branches of pure and applied mathematics. This book offers a self-contained introduction to tropical geometry, suitable as a course text for beginning graduate students. Proofs are provided for the main results, such as the Fundamental Theorem and the Structure Theorem. Numerous examples and explicit computations illustrate the main concepts. Each of the six chapters concludes with problems that will help the readers to practice their tropical skills, and to gain access to the research literature.

Find eBook