Search Results: modern-geometries-non-euclidean-projective-and-discrete-geometry

Modern Geometries

Non-Euclidean, Projective, and Discrete

Author: Michael Henle

Publisher: Pearson College Division

ISBN: 9780130323132

Category: Mathematics

Page: 389

View: 2610

Engaging, accessible, and extensively illustrated, this brief, but solid introduction to modern geometry describes geometry as it is understood and used by contemporary mathematicians and theoretical scientists. Basically non-Euclidean in approach, it relates geometry to familiar ideas from analytic geometry, staying firmly in the Cartesian plane. It uses the principle geometric concept of congruence or geometric transformation--introducing and using the Erlanger Program explicitly throughout. It features significant modern applications of geometry--e.g., the geometry of relativity, symmetry, art and crystallography, finite geometry and computation. Covers a full range of topics from plane geometry, projective geometry, solid geometry, discrete geometry, and axiom systems. For anyone interested in an introduction to geometry used by contemporary mathematicians and theoretical scientists.

Thinking Geometrically

A Survey of Geometries

Author: Thomas Q. Sibley

Publisher: The Mathematical Association of America

ISBN: 1939512085

Category: Mathematics

Page: 586

View: 6535

Thinking Geometrically: A Survey of Geometries is a well written and comprehensive survey of college geometry that would serve a wide variety of courses for both mathematics majors and mathematics education majors. Great care and attention is spent on developing visual insights and geometric intuition while stressing the logical structure, historical development, and deep interconnectedness of the ideas. Students with less mathematical preparation than upper-division mathematics majors can successfully study the topics needed for the preparation of high school teachers. There is a multitude of exercises and projects in those chapters developing all aspects of geometric thinking for these students as well as for more advanced students. These chapters include Euclidean Geometry, Axiomatic Systems and Models, Analytic Geometry, Transformational Geometry, and Symmetry. Topics in the other chapters, including Non-Euclidean Geometry, Projective Geometry, Finite Geometry, Differential Geometry, and Discrete Geometry, provide a broader view of geometry. The different chapters are as independent as possible, while the text still manages to highlight the many connections between topics. The text is self-contained, including appendices with the material in Euclid’s first book and a high school axiomatic system as well as Hilbert’s axioms. Appendices give brief summaries of the parts of linear algebra and multivariable calculus needed for certain chapters. While some chapters use the language of groups, no prior experience with abstract algebra is presumed. The text will support an approach emphasizing dynamical geometry software without being tied to any particular software.

Geometries

Author: Alekseĭ Bronislavovich Sosinskiĭ

Publisher: American Mathematical Soc.

ISBN: 082187571X

Category: Mathematics

Page: 301

View: 7597

The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.

Computer Graphics Through OpenGL

From Theory to Experiments, Second Edition

Author: Sumanta Guha

Publisher: CRC Press

ISBN: 1482258404

Category: Computers

Page: 951

View: 7361

From geometric primitives to animation to 3D modeling to lighting, shading, and texturing, Computer Graphics Through OpenGL®: From Theory to Experiments, Second Edition presents a comprehensive introduction to computer graphics that uses an active learning style to teach key concepts. Equally emphasizing theory and practice, the book provides an understanding not only of the principles of 3D computer graphics, but also the use of the OpenGL® Application Programming Interface (API) to code 3D scenes and animation, including games and movies. The undergraduate core of the book is a one-semester sequence taking the student from zero knowledge of computer graphics to a mastery of the fundamental concepts with the ability to code applications using fourth-generation OpenGL. The remaining chapters explore more advanced topics, including the structure of curves and surfaces and the application of projective spaces and transformations. New to the Second Edition 30 more programs, 50 more experiments, and 50 more exercises Two new chapters on OpenGL 4.3 shaders and the programmable pipeline Coverage of: Vertex buffer and array objects Occlusion culling and queries and conditional rendering Texture matrices Multitexturing and texture combining Multisampling Point sprites Image and pixel manipulation Pixel buffer objects Shadow mapping Web Resource The book’s website at www.sumantaguha.com provides program source code that runs on various platforms. It includes a guide to installing OpenGL and executing the programs, special software to help run the experiments, and figures from the book. The site also contains an instructor’s manual with solutions to 100 problems (for qualifying instructors only).

Perspectives on Projective Geometry

A Guided Tour Through Real and Complex Geometry

Author: Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

ISBN: 9783642172861

Category: Mathematics

Page: 571

View: 8575

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

A Combinatorial Introduction to Topology

Author: Michael Henle

Publisher: Courier Corporation

ISBN: 9780486679662

Category: Mathematics

Page: 310

View: 8406

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Automated Deduction in Geometry

8th International Workshop, ADG 2010, Munich, Germany, July 22-24, 2010, Revised Papers

Author: Pascal Schreck,Julien Narboux,Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

ISBN: 3642250696

Category: Computers

Page: 259

View: 4684

This book constitutes the thoroughly refereed post-workshop proceedings of the 8th International Workshop on Automated Deduction in Geometry, ADG 2010, held in Munich, Germany in July 2010. The 13 revised full papers presented were carefully selected during two rounds of reviewing and improvement from the lectures given at the workshop. Topics addressed by the papers are incidence geometry using some kind of combinatoric argument; computer algebra; software implementation; as well as logic and proof assistants.

Geometry and Topology

Author: Miles Reid,Balazs Szendroi

Publisher: Cambridge University Press

ISBN: 9780521848893

Category: Mathematics

Page: 196

View: 6793

Geometry provides a whole range of views on the universe, serving as the inspiration, technical toolkit and ultimate goal for many branches of mathematics and physics. This book introduces the ideas of geometry, and includes a generous supply of simple explanations and examples. The treatment emphasises coordinate systems and the coordinate changes that generate symmetries. The discussion moves from Euclidean to non-Euclidean geometries, including spherical and hyperbolic geometry, and then on to affine and projective linear geometries. Group theory is introduced to treat geometric symmetries, leading to the unification of geometry and group theory in the Erlangen program. An introduction to basic topology follows, with the Möbius strip, the Klein bottle and the surface with g handles exemplifying quotient topologies and the homeomorphism problem. Topology combines with group theory to yield the geometry of transformation groups,having applications to relativity theory and quantum mechanics. A final chapter features historical discussions and indications for further reading. With minimal prerequisites, the book provides a first glimpse of many research topics in modern algebra, geometry and theoretical physics. The book is based on many years' teaching experience, and is thoroughly class-tested. There are copious illustrations, and each chapter ends with a wide supply of exercises. Further teaching material is available for teachers via the web, including assignable problem sheets with solutions.

Elementary Geometry

Author: Ilka Agricola,Thomas Friedrich

Publisher: American Mathematical Soc.

ISBN: 0821843478

Category: Mathematics

Page: 243

View: 7674

Elementary geometry provides the foundation of modern geometry. For the most part, the standard introductions end at the formal Euclidean geometry of high school. Agricola and Friedrich revisit geometry, but from the higher viewpoint of university mathematics. Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries by their number of fixed points. Complex numbers are introduced to provide an alternative, very elegant approach to plane geometry. The authors then treat spherical and hyperbolic geometries, with special emphasis on their basic geometric properties. This largely self-contained book provides a much deeper understanding of familiar topics, as well as an introduction to new topics that complete the picture of two-dimensional geometries. For undergraduate mathematics students the book will be an excellent introduction to an advanced point of view on geometry. For mathematics teachers it will be a valuable reference and a source book for topics for projects. The book contains over 100 figures and scores of exercises. It is suitable for a one-semester course in geometry for undergraduates, particularly for mathematics majors and future secondary school teachers.

Roads to Geometry

Third Edition

Author: Edward C. Wallace,Stephen F. West

Publisher: Waveland Press

ISBN: 1478632046

Category: Mathematics

Page: 510

View: 9625

Now available from Waveland Press, the Third Edition of Roads to Geometry is appropriate for several kinds of students. Pre-service teachers of geometry are provided with a thorough yet accessible treatment of plane geometry in a historical context. Mathematics majors will find its axiomatic development sufficiently rigorous to provide a foundation for further study in the areas of Euclidean and non-Euclidean geometry. By using the SMSG postulate set as a basis for the development of plane geometry, the authors avoid the pitfalls of many “foundations of geometry” texts that encumber the reader with such a detailed development of preliminary results that many other substantive and elegant results are inaccessible in a one-semester course. At the end of each section is an ample collection of exercises of varying difficulty that provides problems that both extend and clarify results of that section, as well as problems that apply those results. At the end of chapters 3–7, a summary list of the new definitions and theorems of each chapter is included.

A Course in Modern Geometries

Author: Judith Cederberg

Publisher: Springer Science & Business Media

ISBN: 1475738315

Category: Mathematics

Page: 233

View: 7710

A Course in Modern Geometries is designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school. Chapter 1 presents several finite geometries in an axiomatic framework. Chapter 2 introduces Euclid's geometry and the basic ideas of non-Euclidean geometry. The synthetic approach of Chapters 1 - 2 is followed by the analytic treatment of transformations of the Euclidean plane in Chapter 3. Chapter 4 presents plane projective geometry both synthetically and analytically. The extensive use of matrix representations of groups of transformations in Chapters 3 - 4 reinforces ideas from linear algebra and serves as excellent preparation for a course in abstract algebra. Each chapter includes a list of suggested sources for applications and/or related topics.

Euclidean and Non-Euclidean Geometry International Student Edition

An Analytic Approach

Author: Patrick J. Ryan

Publisher: Cambridge University Press

ISBN: 0521127076

Category: Mathematics

Page: 232

View: 6708

This book gives a rigorous treatment of the fundamentals of plane geometry: Euclidean, spherical, elliptical and hyperbolic.

Digital and Discrete Geometry

Theory and Algorithms

Author: Li Chen

Publisher: Springer

ISBN: 3319120999

Category: Computers

Page: 322

View: 5007

This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.

Affine and Projective Geometry

Author: M. K. Bennett

Publisher: John Wiley & Sons

ISBN: 1118030826

Category: Mathematics

Page: 248

View: 4808

An important new perspective on AFFINE AND PROJECTIVE GEOMETRY This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory, and the book culminates with the fundamental theorem of projective geometry. While emphasizing affine geometry and its basis in Euclidean concepts, the book: * Builds an appreciation of the geometric nature of linear algebra * Expands students' understanding of abstract algebra with its nontraditional, geometry-driven approach * Demonstrates how one branch of mathematics can be used to prove theorems in another * Provides opportunities for further investigation of mathematics by various means, including historical references at the ends of chapters Throughout, the text explores geometry's correlation to algebra in ways that are meant to foster inquiry and develop mathematical insights whether or not one has a background in algebra. The insight offered is particularly important for prospective secondary teachers who must major in the subject they teach to fulfill the licensing requirements of many states. Affine and Projective Geometry's broad scope and its communicative tone make it an ideal choice for all students and professionals who would like to further their understanding of things mathematical.

Solutions Manual to Accompany Classical Geometry

Euclidean, Transformational, Inversive, and Projective

Author: I. E. Leonard,J. E. Lewis,A. C. F. Liu,G. W. Tokarsky

Publisher: John Wiley & Sons

ISBN: 111890348X

Category: Mathematics

Page: 176

View: 2900

Solutions Manual to accompany Classical Geometry: Euclidean, Transformational, Inversive, and Projective Written by well-known mathematical problem solvers, Classical Geometry: Euclidean, Transformational, Inversive, and Projective features up-to-date and applicable coverage of the wide spectrum of geometry and aids readers in learning the art of logical reasoning, modeling, and proof. With its reader-friendly approach, this undergraduate text features self-contained topical coverage and provides a large selection of solved exercises to aid in reader comprehension. Material in this text can be tailored for a one-, two-, or three-semester sequence.

A Survey of Combinatorial Theory

Author: Jagdish N. Srivastava

Publisher: Elsevier

ISBN: 1483278174

Category: Biography & Autobiography

Page: 476

View: 9844

A Survey of Combinatorial Theory covers the papers presented at the International Symposium on Combinatorial Mathematics and its Applications, held at Colorado State University (CSU), Fort Collins, Colorado on September 9-11, 1971. The book focuses on the principles, operations, and approaches involved in combinatorial theory, including the Bose-Nelson sorting problem, Golay code, and Galois geometries. The selection first ponders on classical and modern topics in finite geometrical structures; balanced hypergraphs and applications to graph theory; and strongly regular graph derived from the perfect ternary Golay code. Discussions focus on perfect ternary Golay code, finite projective and affine planes, Galois geometries, and other geometric structures. The book then examines the characterization problems of combinatorial graph theory, line-minimal graphs with cyclic group, circle geometry in higher dimensions, and Cayley diagrams and regular complex polygons. The text discusses combinatorial problems in finite Abelian groups, dissection graphs of planar point sets, combinatorial problems and results in fractional replication, Bose-Nelson sorting problem, and some combinatorial aspects of coding theory. The text also reviews the enumerative theory of planar maps, balanced arrays and orthogonal arrays, existence of resolvable block designs, and combinatorial problems in communication networks. The selection is a valuable source of information for mathematicians and researchers interested in the combinatorial theory.

Which Numbers Are Real?

Author: Michael Henle

Publisher: MAA

ISBN: 0883857774

Category: Mathematics

Page: 219

View: 6554

Everyone knows the real numbers, those fundamental quantities that make possible all of mathematics from high school algebra and Euclidean geometry through the Calculus and beyond; and also serve as the basis for measurement in science, industry, and ordinary life. This book surveys alternative real number systems: systems that generalize and extend the real numbers yet stay close to these properties that make the reals central to mathematics.Alternative real numbers include many different kinds of numbers, for example multidimensional numbers (the complex numbers, the quaternions and others), infinitely small and infinitely large numbers (the hyperreal numbers and the surreal numbers), and numbers that represent positions in games (the surreal numbers). Each system has a well-developed theory, including applications to other areas of mathematics and science, such as physics, the theory of games, multi-dimensional geometry, and formal logic. They are all active areas of current mathematical research and each has unique features, in particular, characteristic methods of proof and implications for the philosophy of mathematics, both highlighted in this book.Alternative real number systems illuminate the central, unifying role of the real numbers and include some exciting and eccentric parts of mathematics. Which Numbers Are Real? Will be of interest to anyone with an interest in numbers, but specifically to upper-level undergraduates, graduate students, and professional mathematicians, particularly college mathematics teachers.

Modeling of Curves and Surfaces with MATLAB®

Author: Vladimir Rovenski

Publisher: Springer Science & Business Media

ISBN: 0387712771

Category: Mathematics

Page: 452

View: 9034

This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.

The Geometric Vein

The Coxeter Festschrift

Author: C. Davis,B. Grünbaum,F.A. Sherk

Publisher: Springer Science & Business Media

ISBN: 1461256488

Category: Mathematics

Page: 598

View: 3039

Geometry has been defined as that part of mathematics which makes appeal to the sense of sight; but this definition is thrown in doubt by the existence of great geometers who were blind or nearly so, such as Leonhard Euler. Sometimes it seems that geometric methods in analysis, so-called, consist in having recourse to notions outside those apparently relevant, so that geometry must be the joining of unlike strands; but then what shall we say of the importance of axiomatic programmes in geometry, where reference to notions outside a restricted reper tory is banned? Whatever its definition, geometry clearly has been more than the sum of its results, more than the consequences of some few axiom sets. It has been a major current in mathematics, with a distinctive approach and a distinc ti v e spirit. A current, furthermore, which has not been constant. In the 1930s, after a period of pervasive prominence, it appeared to be in decline, even passe. These same years were those in which H. S. M. Coxeter was beginning his scientific work. Undeterred by the unfashionability of geometry, Coxeter pursued it with devotion and inspiration. By the 1950s he appeared to the broader mathematical world as a consummate practitioner of a peculiar, out-of-the-way art. Today there is no longer anything that out-of-the-way about it. Coxeter has contributed to, exemplified, we could almost say presided over an unanticipated and dra matic revival of geometry.

Find eBook