Search Results: quantum-field-theory

Quantum Field Theory

Author: Lewis H. Ryder

Publisher: Cambridge University Press

ISBN: 9780521478144

Category: Science

Page: 487

View: 6096

This book is a modern introduction to the ideas and techniques of quantum field theory. After a brief overview of particle physics and a survey of relativistic wave equations and Lagrangian methods, the author develops the quantum theory of scalar and spinor fields, and then of gauge fields. The emphasis throughout is on functional methods, which have played a large part in modern field theory. The book concludes with a brief survey of "topological" objects in field theory and, new to this edition, a chapter devoted to supersymmetry. Graduate students in particle physics and high energy physics will benefit from this book.

Quantum Field Theory

Author: Claude Itzykson,Jean-Bernard Zuber

Publisher: Courier Corporation

ISBN: 0486134695

Category: Science

Page: 752

View: 3129

This comprehensive text begins with the standard quantization of electrodynamics and perturbative renormalization, advancing to functional methods, relativistic bound states, broken symmetries, nonabelian gauge fields, and asymptotic behavior. 1980 edition.

Quantum Field Theory

Author: Mark Srednicki

Publisher: Cambridge University Press

ISBN: 1139462768

Category: Science

Page: N.A

View: 7848

Quantum field theory is the basic mathematical framework that is used to describe elementary particles. This textbook provides a complete and essential introduction to the subject. Assuming only an undergraduate knowledge of quantum mechanics and special relativity, this book is ideal for graduate students beginning the study of elementary particles. The step-by-step presentation begins with basic concepts illustrated by simple examples, and proceeds through historically important results to thorough treatments of modern topics such as the renormalization group, spinor-helicity methods for quark and gluon scattering, magnetic monopoles, instantons, supersymmetry, and the unification of forces. The book is written in a modular format, with each chapter as self-contained as possible, and with the necessary prerequisite material clearly identified. It is based on a year-long course given by the author and contains extensive problems, with password protected solutions available to lecturers at

Geometric Analysis and Applications to Quantum Field Theory

Author: Peter Bouwknegt,Siye Wu

Publisher: Springer Science & Business Media

ISBN: 9780817642877

Category: Mathematics

Page: 207

View: 4857

In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.

Quantum Field Theory

Author: Franz Mandl,Graham Shaw

Publisher: John Wiley & Sons

ISBN: 1118716655

Category: Science

Page: 496

View: 5118

Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physics. Thus, the first ten chapters deal with QED in the canonical formalism, and are little changed from the first edition. A brief introduction to gauge theories (Chapter 11) is then followed by two sections, which may be read independently of each other. They cover QCD and related topics (Chapters 12-15) and the unified electroweak theory (Chapters 16 – 19) respectively. Problems are provided at the end of each chapter. New to this edition: Five new chapters, giving an introduction to quantum chromodynamics and the methods used to understand it: in particular, path integrals and the renormalization group. The treatment of electroweak interactions has been revised and updated to take account of more recent experiments.

Geometry and Quantum Field Theory

Author: Daniel S. Freed,Karen K. Uhlenbeck,American Mathematical Society,Institute for Advanced Study (Princeton, N.J.)

Publisher: American Mathematical Soc.

ISBN: 9780821886830

Category: Science

Page: 459

View: 4619

The first title in a new series, this book explores topics from classical and quantum mechanics and field theory. The material is presented at a level between that of a textbook and research papers making it ideal for graduate students. The book provides an entree into a field that promises to remain exciting and important for years to come.

Quantum Field Theory

A Modern Perspective

Author: V. P. Nair

Publisher: Springer Science & Business Media

ISBN: 0387250980

Category: Science

Page: 558

View: 571

Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it grew out of courses on field theory and particle physics taught at Columbia University and the City College of CUNY. The first few chapters, up to Chapter 12, contain material that generally goes into any course on quantum field theory, although there are a few nuances of presentation which readers may find to be different from other books. This first part of the book can be used for a general course on field theory, omitting, perhaps, the last three sections in Chapter 3, the last two in Chapter 8 and sections 6 and 7 in Chapter 10. The remaining chapters cover some of the more modern developments over the last three decades, involving topological and geometrical features. The introduction given to the mathematical basis of this part of the discussion is necessarily brief and should be accompanied by books on the relevant mathematical topics as indicated in the bibliography. Professor Nair also concentrates on developments pertinent to a better understanding of the standard model. There is no discussion of supersymmetry, supergravity, developments in field theory inspired by string theory, etc. There is also no detailed discussion of the renormalization group. Each of these topics would require a book in its own right to do justice to the topic. Quantum Field Theory: A Modern Perspective serves as a portal to so many more topics of detailed and ongoing research, referring readers to more detailed treatments for many specific topics. The book also contains extensive references, providing readers a more comprehensive perspective on the literature and the historical development of the subject. V. Parameswaran Nair is Professor of Physics at City College of The City University of New York (CUNY). Professor Nair has held Visiting Professorships at The Abdus Salam International Center for Theoretical Physics, Rockefeller University, Institute for Advanced Study at Princeton, and Massachusetts Institute of Technology.

Composite Particle Dynamics in Quantum Field Theory

Author: Harald Stumpf,Thomas Borne

Publisher: Springer-Verlag

ISBN: 332283901X

Category: Science

Page: 274

View: 3155

Quantum Field Theory

From Operators to Path Integrals

Author: Kerson Huang

Publisher: John Wiley & Sons

ISBN: 3527408460

Category: Science

Page: 424

View: 2795

A new, updated and enhanced edition of the classic work, which was welcomed for its general approach and self-sustaining organization of the chapters. Written by a highly respected textbook writer and researcher, this book has a more general scope and adopts a more practical approach than other books. It includes applications of condensed matter physics, first developing traditional concepts, including Feynman graphs, before moving on to such key topics as functional integrals, statistical mechanics and Wilson's renormalization group. The author takes care to explain the connection between the latter and conventional perturbative renormalization. Due to the rapid advance and increase in importance of low dimensional systems, this second edition fills a gap in the market with its added discussions of low dimensional systems, including one-dimensional conductors. All the chapters have been revised, while more clarifying explanations and problems have been added. A FREE SOLUTIONS MANUAL is available for lecturers from

Quantum Field Theory in a Nutshell

Second Edition

Author: A. Zee

Publisher: Princeton University Press

ISBN: 9781400835324

Category: Science

Page: 608

View: 1413

Since it was first published, Quantum Field Theory in a Nutshell has quickly established itself as the most accessible and comprehensive introduction to this profound and deeply fascinating area of theoretical physics. Now in this fully revised and expanded edition, A. Zee covers the latest advances while providing a solid conceptual foundation for students to build on, making this the most up-to-date and modern textbook on quantum field theory available. This expanded edition features several additional chapters, as well as an entirely new section describing recent developments in quantum field theory such as gravitational waves, the helicity spinor formalism, on-shell gluon scattering, recursion relations for amplitudes with complex momenta, and the hidden connection between Yang-Mills theory and Einstein gravity. Zee also provides added exercises, explanations, and examples, as well as detailed appendices, solutions to selected exercises, and suggestions for further reading. The most accessible and comprehensive introductory textbook available Features a fully revised, updated, and expanded text Covers the latest exciting advances in the field Includes new exercises Offers a one-of-a-kind resource for students and researchers Leading universities that have adopted this book include: Arizona State University Boston University Brandeis University Brown University California Institute of Technology Carnegie Mellon College of William & Mary Cornell Harvard University Massachusetts Institute of Technology Northwestern University Ohio State University Princeton University Purdue University - Main Campus Rensselaer Polytechnic Institute Rutgers University - New Brunswick Stanford University University of California - Berkeley University of Central Florida University of Chicago University of Michigan University of Montreal University of Notre Dame Vanderbilt University Virginia Tech University

Quantum Field Theory

The Why, What and How

Author: Thanu Padmanabhan

Publisher: Springer

ISBN: 3319281739

Category: Science

Page: 283

View: 6317

This book describes, in clear terms, the Why, What and the How of Quantum Field Theory. The raison d'etre of QFT is explained by starting from the dynamics of a relativistic particle and demonstrating how it leads to the notion of quantum fields. Non-perturbative aspects and the Wilsonian interpretation of field theory are emphasized right from the start. Several interesting topics such as the Schwinger effect, Davies-Unruh effect, Casimir effect and spontaneous symmetry breaking introduce the reader to the elegance and breadth of applicability of field theoretical concepts. Complementing the conceptual aspects, the book also develops all the relevant mathematical techniques in detail, leading e.g., to the computation of anomalous magnetic moment of the electron and the two-loop renormalisation of the self-interacting scalar field. It contains nearly a hundred problems, of varying degrees of difficulty, making it suitable for both self-study and classroom use.

Quantum Field Theory of Non-equilibrium States

Author: Jørgen Rammer

Publisher: Cambridge University Press

ISBN: 1139465015

Category: Science

Page: N.A

View: 2953

Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.

A First Book of Quantum Field Theory

Author: Amitabha Lahiri,Palash B. Pal

Publisher: CRC Press

ISBN: 9780849338977

Category: Science

Page: 380

View: 8450

This book introduces QFT for readers with no prior knowledge of the subject. It is meant to be a textbook for advanced undergraduate or beginning postgraduate students. The book discusses quantization of fields, S-matrix theory, Feynman diagrams, calculation of decay rates and cross sections, renormalization, symmetries and symmetry breaking. Some background material on classical field theory and group theory, needed for the exposition, are also presented in the book. Detailed calculations of weak and electromagnetic processes are included. There are many exercise problems to help the students, instructors and beginning researchers in the field. The second edition improves upon some notations and explanations, and includes answers to selected exercises.

Non-perturbative Methods in 2 Dimensional Quantum Field Theory

Author: Elcio Abdalla,M. Cristina B. Abdalla

Publisher: World Scientific

ISBN: 9812810153

Category: Electronic books

Page: 832

View: 2213

The second edition of Non-Perturbative Methods in Two-Dimensional Quantum Field Theory is an extensively revised version, involving major changes and additions. Although much of the material is special to two dimensions, the techniques used should prove helpful also in the development of techniques applicable in higher dimensions. In particular, the last three chapters of the book will be of direct interest to researchers wanting to work in the field of conformal field theory and strings. This book is intended for students working for their PhD degree and post-doctoral researchers wishing to acquaint themselves with the non-perturbative aspects of quantum field theory. Contents: Free Fields; The Thirring Model; Determinants and Heat Kernels; Self-Interacting Fermionic Models; Nonlinear a Models: Classical Aspects; Nonlinear a Models OCo Quantum Aspects; Exact S-Matrices of 2D Models; The Wess-Zumino-Witten Theory; QED 2: Operator Approach; Quantum Chromodynamics; QED 2: Functional Approach; The Finite Temperature Schwinger Model; Non-Abelian Chiral Gauge Theories; Chiral Quantum Electrodynamics; Conformally Invariant Field Theory; Conformal Field Theory with Internal Symmetry; 2D Gravity and String-Related Topics. Readership: Graduate students and researchers in high energy and quantum physics."

Quantum Field Theory and the Standard Model

Author: Matthew D. Schwartz

Publisher: Cambridge University Press

ISBN: 1107034736

Category: Science

Page: 863

View: 2415

Modern introduction to quantum field theory for graduates, providing intuitive, physical explanations supported by real-world applications and homework problems.

Quantum Field Theory for Mathematicians

Author: Robin Ticciati,Robin (Maharishi University of Management Ticciati, Iowa)

Publisher: Cambridge University Press

ISBN: 9780521632652

Category: Mathematics

Page: 699

View: 6377

This should be a useful reference for anybody with an interest in quantum theory.

Differential Topology and Quantum Field Theory

Author: Charles Nash

Publisher: Elsevier

ISBN: 9780125140768

Category: Mathematics

Page: 386

View: 1460

The remarkable developments in differential topology and how these recent advances have been applied as a primary research tool in quantum field theory are presented here in a style reflecting the genuinely two-sided interaction between mathematical physics and applied mathematics. The author, following his previous work (Nash/Sen: Differential Topology for Physicists, Academic Press, 1983), covers elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory. The explanatory approach serves to illuminate and clarify these theories for graduate students and research workers entering the field for the first time. Treats differential geometry, differential topology, and quantum field theory Includes elliptic differential and pseudo-differential operators, Atiyah-Singer index theory, topological quantum field theory, string theory, and knot theory Tackles problems of quantum field theory using differential topology as a tool

Analysis, Geometry, and Quantum Field Theory

Author: Clara L. Aldana

Publisher: American Mathematical Soc.

ISBN: 0821891448

Category: Mathematics

Page: 258

View: 6076

This volume contains the proceedings of the conference ``Analysis, Geometry and Quantum Field Theory'' held at Potsdam University in September 2011, which honored Steve Rosenberg's 60th birthday. The papers in this volume cover a wide range of areas, including Quantum Field Theory, Deformation Quantization, Gerbes, Loop Spaces, Index Theory, Determinants of Elliptic Operators, K-theory, Infinite Rank Bundles and Mathematical Biology.

Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics

Author: Robert M. Wald

Publisher: University of Chicago Press

ISBN: 9780226870274

Category: Science

Page: 205

View: 8199

In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum field theory, and will be of interest to scientists in general relativity and related fields.

Advances in Topological Quantum Field Theory

Proceedings of the NATO Adavanced Research Workshop on New Techniques in Topological Quantum Field Theory, Kananaskis Village, Canada 22 - 26 August 2001

Author: John M. Bryden

Publisher: Springer Science & Business Media

ISBN: 1402027729

Category: Mathematics

Page: 354

View: 8392

This volume is the conference proceedings of the NATO ARW during August 2001 at Kananaskis Village, Canada on 'New Techniques in Topological Quantum Field Theory'. This conference brought together specialists from a number of different fields all related to Topological Quantum Field Theory. The theme of this conference was to attempt to find new methods in quantum topology from the interaction with specialists in these other fields. The featured articles include papers by V. Vassiliev on combinatorial formulas for cohomology of spaces of Knots, the computation of Ohtsuki series by N. Jacoby and R. Lawrence, and a paper by M. Asaeda and J. Przytycki on the torsion conjecture for Khovanov homology by Shumakovitch. Moreover, there are articles on more classical topics related to manifolds and braid groups by such well known authors as D. Rolfsen, H. Zieschang and F. Cohen.

Find eBook