Search Results: theory-of-ordinary-differential-equations-pure-applied-mathematics

Theory of ordinary differential equations

Author: Earl A. Coddington,Norman Levinson

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 429

View: 5355

Ordinary Differential Equations

Introduction and Qualitative Theory, Third Edition

Author: Jane Cronin

Publisher: CRC Press

ISBN: 9780824791896

Category: Mathematics

Page: 392

View: 6668

This text, now in its second edition, presents the basic theory of ordinary differential equations and relates the topological theory used in differential equations to advanced applications in chemistry and biology. It provides new motivations for studying extension theorems and existence theorems, supplies real-world examples, gives an early introduction to the use of geometric methods and offers a novel treatment of the Sturm-Liouville theory.

Partial Integral Operators and Integro-Differential Equations

Pure and Applied Mathematics

Author: Jurgen Appell,Anatolij Kalitvin,Petr Zabrejko

Publisher: CRC Press

ISBN: 9780824703967

Category: Mathematics

Page: 578

View: 7836

A self-contained account of integro-differential equations of the Barbashin type and partial integral operators. It presents the basic theory of Barbashin equations in spaces of continuous or measurable functions, including existence, uniqueness, stability and perturbation results. The theory and applications of partial integral operators and linear and nonlinear equations is discussed. Topics range from abstract functional-analytic approaches to specific uses in continuum mechanics and engineering.

Differential Equations, Dynamical Systems, and Linear Algebra

Author: Morris W. Hirsch,Robert L. Devaney,Stephen Smale

Publisher: Academic Press

ISBN: 0080873766

Category: Mathematics

Page: 358

View: 912

This book is about dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. A prominent role is played by the structure theory of linear operators on finite-dimensional vector spaces; the authors have included a self-contained treatment of that subject.

Algorithmic Lie Theory for Solving Ordinary Differential Equations

Author: Fritz Schwarz

Publisher: CRC Press

ISBN: 9781584888901

Category: Mathematics

Page: 448

View: 3960

Despite the fact that Sophus Lie's theory was virtually the only systematic method for solving nonlinear ordinary differential equations (ODEs), it was rarely used for practical problems because of the massive amount of calculations involved. But with the advent of computer algebra programs, it became possible to apply Lie theory to concrete problems. Taking this approach, Algorithmic Lie Theory for Solving Ordinary Differential Equations serves as a valuable introduction for solving differential equations using Lie's theory and related results. After an introductory chapter, the book provides the mathematical foundation of linear differential equations, covering Loewy's theory and Janet bases. The following chapters present results from the theory of continuous groups of a 2-D manifold and discuss the close relation between Lie's symmetry analysis and the equivalence problem. The core chapters of the book identify the symmetry classes to which quasilinear equations of order two or three belong and transform these equations to canonical form. The final chapters solve the canonical equations and produce the general solutions whenever possible as well as provide concluding remarks. The appendices contain solutions to selected exercises, useful formulae, properties of ideals of monomials, Loewy decompositions, symmetries for equations from Kamke's collection, and a brief description of the software system ALLTYPES for solving concrete algebraic problems.

A First Course in the Numerical Analysis of Differential Equations

Author: Arieh Iserles

Publisher: Cambridge University Press

ISBN: 9780521556552

Category: Mathematics

Page: 378

View: 6921

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance between theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics. Dr Iserles concentrates on fundamentals: deriving methods from first principles, analysing them with a variety of mathematical techniques and occasionally discussing questions of implementation and applications. By doing so, he is able to lead the reader to theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations.

Asymptotic Expansions for Ordinary Differential Equations

Author: Wolfgang Wasow

Publisher: Courier Corporation

ISBN: 9780486495187

Category: Mathematics

Page: 374

View: 4234

"A book of great value . . . it should have a profound influence upon future research."--Mathematical Reviews. Hardcover edition. The foundations of the study of asymptotic series in the theory of differential equations were laid by Poincaré in the late 19th century, but it was not until the middle of this century that it became apparent how essential asymptotic series are to understanding the solutions of ordinary differential equations. Moreover, they have come to be seen as crucial to such areas of applied mathematics as quantum mechanics, viscous flows, elasticity, electromagnetic theory, electronics, and astrophysics. In this outstanding text, the first book devoted exclusively to the subject, the author concentrates on the mathematical ideas underlying the various asymptotic methods; however, asymptotic methods for differential equations are included only if they lead to full, infinite expansions. Unabridged Dover republication of the edition published by Robert E. Krieger Publishing Company, Huntington, N.Y., 1976, a corrected, slightly enlarged reprint of the original edition published by Interscience Publishers, New York, 1965. 12 illustrations. Preface. 2 bibliographies. Appendix. Index.

Foundations of the Classical Theory of Partial Differential Equations

Author: Yu.V. Egorov,M.A. Shubin

Publisher: Springer Science & Business Media

ISBN: 3642580939

Category: Mathematics

Page: 259

View: 3880

From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... It is comparable in scope with the great Courant-Hilbert Methods of Mathematical Physics, but it is much shorter, more up to date of course, and contains more elaborate analytical machinery...." The Mathematical Gazette, 1993

Oscillation Theory of Differential Equations with Deviating Arguments

Author: G. S. Ladde,V. Lakshmikantham,B. G. Zhang

Publisher: Marcel Dekker Incorporated

ISBN: N.A

Category: Mathematics

Page: 308

View: 9853

Functional Differential Equations

Advances and Applications

Author: Constantin Corduneanu,Yizeng Li,Mehran Mahdavi

Publisher: John Wiley & Sons

ISBN: 1119189470

Category: Mathematics

Page: 368

View: 8709

Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Comparison and Oscillation Theory of Linear Differential Equations

Author: C. A. Swanson

Publisher: Elsevier

ISBN: 1483266672

Category: Mathematics

Page: 236

View: 5714

Mathematics in Science and Engineering, Volume 48: Comparison and Oscillation Theory of Linear Differential Equations deals primarily with the zeros of solutions of linear differential equations. This volume contains five chapters. Chapter 1 focuses on comparison theorems for second order equations, while Chapter 2 treats oscillation and nonoscillation theorems for second order equations. Separation, comparison, and oscillation theorems for fourth order equations are covered in Chapter 3. In Chapter 4, ordinary equations and systems of differential equations are reviewed. The last chapter discusses the result of the first analog of a Sturm-type comparison theorem for an elliptic partial differential equation. This publication is intended for college seniors or beginning graduate students who are well-acquainted with advanced calculus, complex analysis, linear algebra, and linear differential equations.

Ordinary Differential Equations

An Introduction to Nonlinear Analysis

Author: Herbert Amann

Publisher: Walter de Gruyter

ISBN: 3110853698

Category: Mathematics

Page: 467

View: 3889

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

Nonoscillation and Oscillation Theory for Functional Differential Equations

Author: Ravi P. Agarwal,Martin Bohner,Wan-Tong Li

Publisher: CRC Press

ISBN: 0203025741

Category: Mathematics

Page: 400

View: 4170

This book summarizes the qualitative theory of differential equations with or without delays, collecting recent oscillation studies important to applications and further developments in mathematics, physics, engineering, and biology. The authors address oscillatory and nonoscillatory properties of first-order delay and neutral delay differential equations, second-order delay and ordinary differential equations, higher-order delay differential equations, and systems of nonlinear differential equations. The final chapter explores key aspects of the oscillation of dynamic equations on time scales-a new and innovative theory that accomodates differential and difference equations simultaneously.

Numerical Solution of Ordinary Differential Equations

Author: Kendall Atkinson,Weimin Han,David E. Stewart

Publisher: John Wiley & Sons

ISBN: 1118164520

Category: Mathematics

Page: 272

View: 2685

A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.

Non-Linear Differential Equations

International Series of Monographs in Pure and Applied Mathematics

Author: G. Sansone,R. Conti

Publisher: Elsevier

ISBN: 1483135969

Category: Mathematics

Page: 550

View: 5639

International Series of Monographs in Pure and Applied Mathematics, Volume 67: Non-Linear Differential Equations, Revised Edition focuses on the analysis of the phase portrait of two-dimensional autonomous systems; qualitative methods used in finding periodic solutions in periodic systems; and study of asymptotic properties. The book first discusses general theorems about solutions of differential systems. Periodic solutions, autonomous systems, and integral curves are explained. The text explains the singularities of Briot-Bouquet theory. The selection takes a look at plane autonomous systems. Topics include limiting sets, plane cycles, isolated singular points, index, and the torus as phase space. The text also examines autonomous plane systems with perturbations and autonomous and non-autonomous systems with one degree of freedom. The book also tackles linear systems. Reducible systems, periodic solutions, and linear periodic systems are considered. The book is a vital source of information for readers interested in applied mathematics.

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev

Publisher: Courier Corporation

ISBN: 9780486659640

Category: Science

Page: 427

View: 4691

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.

Partial Differential Equations of Parabolic Type

Author: Avner Friedman

Publisher: Courier Corporation

ISBN: 0486318265

Category: Mathematics

Page: 368

View: 5881

With this book, even readers unfamiliar with the field can acquire sufficient background to understand research literature related to the theory of parabolic and elliptic equations. 1964 edition.

Ordinary Differential Equations in the Complex Domain

Author: Einar Hille

Publisher: Courier Corporation

ISBN: 9780486696201

Category: Mathematics

Page: 484

View: 6662

Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.

Partial Differential Equations of Applied Mathematics

Author: Erich Zauderer

Publisher: John Wiley & Sons

ISBN: 1118031407

Category: Mathematics

Page: 968

View: 5244

This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material.

Principles of Differential Equations

Author: Nelson G. Markley

Publisher: John Wiley & Sons

ISBN: 1118031539

Category: Mathematics

Page: 352

View: 6577

An accessible, practical introduction to the principles ofdifferential equations The field of differential equations is a keystone of scientificknowledge today, with broad applications in mathematics,engineering, physics, and other scientific fields. Encompassingboth basic concepts and advanced results, Principles ofDifferential Equations is the definitive, hands-on introductionprofessionals and students need in order to gain a strong knowledgebase applicable to the many different subfields of differentialequations and dynamical systems. Nelson Markley includes essential background from analysis andlinear algebra, in a unified approach to ordinary differentialequations that underscores how key theoretical ingredientsinterconnect. Opening with basic existence and uniqueness results,Principles of Differential Equations systematically illuminates thetheory, progressing through linear systems to stable manifolds andbifurcation theory. Other vital topics covered include: Basic dynamical systems concepts Constant coefficients Stability The Poincaré return map Smooth vector fields As a comprehensive resource with complete proofs and more than200 exercises, Principles of Differential Equations is the idealself-study reference for professionals, and an effectiveintroduction and tutorial for students.

Find eBook