Search Results: theory-of-ordinary-differential-equations-pure-applied-mathematics

Theory of ordinary differential equations

Author: Earl A. Coddington,Norman Levinson

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 429

View: 9007

Ordinary Differential Equations

Introduction and Qualitative Theory, Third Edition

Author: Jane Cronin

Publisher: CRC Press

ISBN: 9780824791896

Category: Mathematics

Page: 392

View: 5787

This text, now in its second edition, presents the basic theory of ordinary differential equations and relates the topological theory used in differential equations to advanced applications in chemistry and biology. It provides new motivations for studying extension theorems and existence theorems, supplies real-world examples, gives an early introduction to the use of geometric methods and offers a novel treatment of the Sturm-Liouville theory.

Partial Integral Operators and Integro-Differential Equations

Pure and Applied Mathematics

Author: Jurgen Appell,Anatolij Kalitvin,Petr Zabrejko

Publisher: CRC Press

ISBN: 9780824703967

Category: Mathematics

Page: 578

View: 3592

A self-contained account of integro-differential equations of the Barbashin type and partial integral operators. It presents the basic theory of Barbashin equations in spaces of continuous or measurable functions, including existence, uniqueness, stability and perturbation results. The theory and applications of partial integral operators and linear and nonlinear equations is discussed. Topics range from abstract functional-analytic approaches to specific uses in continuum mechanics and engineering.

Differential Equations, Dynamical Systems, and Linear Algebra

Author: Morris W. Hirsch,Robert L. Devaney,Stephen Smale

Publisher: Academic Press

ISBN: 0080873766

Category: Mathematics

Page: 358

View: 9946

This book is about dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. A prominent role is played by the structure theory of linear operators on finite-dimensional vector spaces; the authors have included a self-contained treatment of that subject.

Algorithmic Lie Theory for Solving Ordinary Differential Equations

Author: Fritz Schwarz

Publisher: CRC Press

ISBN: 9781584888901

Category: Mathematics

Page: 448

View: 8814

Despite the fact that Sophus Lie's theory was virtually the only systematic method for solving nonlinear ordinary differential equations (ODEs), it was rarely used for practical problems because of the massive amount of calculations involved. But with the advent of computer algebra programs, it became possible to apply Lie theory to concrete problems. Taking this approach, Algorithmic Lie Theory for Solving Ordinary Differential Equations serves as a valuable introduction for solving differential equations using Lie's theory and related results. After an introductory chapter, the book provides the mathematical foundation of linear differential equations, covering Loewy's theory and Janet bases. The following chapters present results from the theory of continuous groups of a 2-D manifold and discuss the close relation between Lie's symmetry analysis and the equivalence problem. The core chapters of the book identify the symmetry classes to which quasilinear equations of order two or three belong and transform these equations to canonical form. The final chapters solve the canonical equations and produce the general solutions whenever possible as well as provide concluding remarks. The appendices contain solutions to selected exercises, useful formulae, properties of ideals of monomials, Loewy decompositions, symmetries for equations from Kamke's collection, and a brief description of the software system ALLTYPES for solving concrete algebraic problems.

Ordinary Differential Equations in the Complex Domain

Author: Einar Hille

Publisher: Courier Corporation

ISBN: 9780486696201

Category: Mathematics

Page: 484

View: 4954

Graduate-level text offers full treatments of existence theorems, representation of solutions by series, theory of majorants, dominants and minorants, questions of growth, much more. Includes 675 exercises. Bibliography.

Non-Linear Differential Equations

International Series of Monographs in Pure and Applied Mathematics

Author: G. Sansone,R. Conti

Publisher: Elsevier

ISBN: 1483135969

Category: Mathematics

Page: 550

View: 3303

International Series of Monographs in Pure and Applied Mathematics, Volume 67: Non-Linear Differential Equations, Revised Edition focuses on the analysis of the phase portrait of two-dimensional autonomous systems; qualitative methods used in finding periodic solutions in periodic systems; and study of asymptotic properties. The book first discusses general theorems about solutions of differential systems. Periodic solutions, autonomous systems, and integral curves are explained. The text explains the singularities of Briot-Bouquet theory. The selection takes a look at plane autonomous systems. Topics include limiting sets, plane cycles, isolated singular points, index, and the torus as phase space. The text also examines autonomous plane systems with perturbations and autonomous and non-autonomous systems with one degree of freedom. The book also tackles linear systems. Reducible systems, periodic solutions, and linear periodic systems are considered. The book is a vital source of information for readers interested in applied mathematics.

Oscillation Theory of Differential Equations with Deviating Arguments

Author: G. S. Ladde,V. Lakshmikantham,B. G. Zhang

Publisher: Marcel Dekker Incorporated

ISBN: N.A

Category: Mathematics

Page: 308

View: 5670

A First Course in the Numerical Analysis of Differential Equations

Author: Arieh Iserles

Publisher: Cambridge University Press

ISBN: 9780521556552

Category: Mathematics

Page: 378

View: 9424

Numerical analysis presents different faces to the world. For mathematicians it is a bona fide mathematical theory with an applicable flavour. For scientists and engineers it is a practical, applied subject, part of the standard repertoire of modelling techniques. For computer scientists it is a theory on the interplay of computer architecture and algorithms for real-number calculations. The tension between these standpoints is the driving force of this book, which presents a rigorous account of the fundamentals of numerical analysis of both ordinary and partial differential equations. The point of departure is mathematical but the exposition strives to maintain a balance between theoretical, algorithmic and applied aspects of the subject. In detail, topics covered include numerical solution of ordinary differential equations by multistep and Runge-Kutta methods; finite difference and finite elements techniques for the Poisson equation; a variety of algorithms to solve large, sparse algebraic systems; methods for parabolic and hyperbolic differential equations and techniques of their analysis. The book is accompanied by an appendix that presents brief back-up in a number of mathematical topics. Dr Iserles concentrates on fundamentals: deriving methods from first principles, analysing them with a variety of mathematical techniques and occasionally discussing questions of implementation and applications. By doing so, he is able to lead the reader to theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations.

Differential Geometry: The Interface between Pure and Applied Mathematics

The Interface Between Pure and Applied Mathematics : Proceedings of a Conference Held April 23-25, 1986 with Support from the National Science Foundation

Author: Mladen Luksic,Clyde Martin

Publisher: American Mathematical Soc.

ISBN: 082185075X

Category: Mathematics

Page: 273

View: 8002

Normally, mathematical research has been divided into 'pure' and 'applied', and only within the past decade has this distinction become blurred. However, differential geometry is one area of mathematics that has not made this distinction and has consistently played a vital role in both general areas. The papers in this volume represent the proceedings of a conference entitled 'Differential Geometry: The Interface Between Pure and Applied Mathematics', which was held in San Antonio, Texas, in April 1986. The purpose of the conference was to explore recent exciting applications and challenging classical problems in differential geometry. The papers represent a tremendous range of applications and techniques in such diverse areas as ordinary differential equations, Lie groups, algebra, numerical analysis and control theory.

Ordinary Differential Equations

An Introduction to Nonlinear Analysis

Author: Herbert Amann

Publisher: Walter de Gruyter

ISBN: 3110853698

Category: Mathematics

Page: 467

View: 8129

The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist. The works in this series are addressed to advanced students and researchers in mathematics and theoretical physics. In addition, it can serve as a guide for lectures and seminars on a graduate level. The series de Gruyter Studies in Mathematics was founded ca. 30 years ago by the late Professor Heinz Bauer and Professor Peter Gabriel with the aim to establish a series of monographs and textbooks of high standard, written by scholars with an international reputation presenting current fields of research in pure and applied mathematics. While the editorial board of the Studies has changed with the years, the aspirations of the Studies are unchanged. In times of rapid growth of mathematical knowledge carefully written monographs and textbooks written by experts are needed more than ever, not least to pave the way for the next generation of mathematicians. In this sense the editorial board and the publisher of the Studies are devoted to continue the Studies as a service to the mathematical community. Please submit any book proposals to Niels Jacob.

Partial Differential Equations of First Order and Their Applications to Physics

Author: Gustavo López Velázquez

Publisher: World Scientific Publishing Company

ISBN: 9814397504

Category: Science

Page: 200

View: 8884

This book tries to point out the mathematical importance of the Partial Differential Equations of First Order (PDEFO) in Physics and Applied Sciences. The intention is to provide mathematicians with a wide view of the applications of this branch in physics, and to give physicists and applied scientists a powerful tool for solving some problems appearing in Classical Mechanics, Quantum Mechanics, Optics, and General Relativity. This book is intended for senior or first year graduate students in mathematics, physics, or engineering curricula. This book is unique in the sense that it covers the applications of PDEFO in several branches of applied mathematics, and fills the theoretical gap between the formal mathematical presentation of the theory and the pure applied tool to physical problems that are contained in other books. Improvements made in this second edition include corrected typographical errors; rewritten text to improve the flow and enrich the material; added exercises in all chapters; new applications in Chapters 1, 2, and 5 and expanded examples. Contents:Geometric Concepts and GeneralitiesPartial Differential Equations of First OrderPhysical Applications INonlinear Partial Differential Equations of First OrderPhysical Applications IICharacteristic Surfaces of Linear Partial Differential Equation of Second Order Readership: Mathematicians, physicists, applied scientists, senior or first year graduate students in mathematics, physics or engineering.

Lectures on Differential and Integral Equations

Author: K?saku Yoshida

Publisher: Courier Corporation

ISBN: 9780486666792

Category: Mathematics

Page: 220

View: 4991

Lucid, self-contained exposition of theory of ordinary differential equations and integral equations. Boundary value problem of second order linear ordinary differential equations, Fredholm integral equations, many other topics. Bibliography. 1960 edition.

Analytic Theory of Differential Equations

The Proceedings of the Conference at Western Michigan University, Kalamazoo, from 30 April to 2 May 1970

Author: P. F. Hsieh,A. W. J. Stoddart

Publisher: Springer

ISBN: 9783540053699

Category: Mathematics

Page: 232

View: 1876

Functional Differential Equations

Advances and Applications

Author: Constantin Corduneanu,Yizeng Li,Mehran Mahdavi

Publisher: John Wiley & Sons

ISBN: 1119189470

Category: Mathematics

Page: 368

View: 1704

Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Foundations of the Classical Theory of Partial Differential Equations

Author: Yu.V. Egorov,M.A. Shubin

Publisher: Springer Science & Business Media

ISBN: 3642580939

Category: Mathematics

Page: 259

View: 4339

From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... It is comparable in scope with the great Courant-Hilbert Methods of Mathematical Physics, but it is much shorter, more up to date of course, and contains more elaborate analytical machinery...." The Mathematical Gazette, 1993

Differential Forms with Applications to the Physical Sciences

Author: Harley Flanders

Publisher: Courier Corporation

ISBN: 9780486661698

Category: Mathematics

Page: 205

View: 5134

Introduces the use of exterior differential forms as a powerful took in the analysis of a variety of mathematical problems in the physical and engineering sciences.

Differential Dynamical Systems

Author: James D. Meiss

Publisher: SIAM

ISBN: 0898716357

Category: Mathematics

Page: 412

View: 9998

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems conceptsflow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems. Audience This textbook is intended for senior undergraduates and first-year graduate students in pure and applied mathematics, engineering, and the physical sciences. Readers should be comfortable with elementary differential equations and linear algebra and should have had exposure to advanced calculus. Contents List of Figures; Preface; Acknowledgments; Chapter 1: Introduction; Chapter 2: Linear Systems; Chapter 3: Existence and Uniqueness; Chapter 4: Dynamical Systems; Chapter 5: Invariant Manifolds; Chapter 6: The Phase Plane; Chapter 7: Chaotic Dynamics; Chapter 8: Bifurcation Theory; Chapter 9: Hamiltonian Dynamics; Appendix: Mathematical Software; Bibliography; Index

Elements of partial differential equations

Author: Ian Naismith Sneddon

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 327

View: 5300

Partial differential equations of applied mathematics

Author: Erich Zauderer

Publisher: John Wiley & Sons

ISBN: N.A

Category: Mathematics

Page: 930

View: 2727

This new edition features the latest tools for modeling, characterizing, and solving partial differential equations The Third Edition of this classic text offers a comprehensive guide to modeling, characterizing, and solving partial differential equations (PDEs). The author provides all the theory and tools necessary to solve problems via exact, approximate, and numerical methods. The Third Edition retains all the hallmarks of its previous editions, including an emphasis on practical applications, clear writing style and logical organization, and extensive use of real-world examples. Among the new and revised material, the book features: * A new section at the end of each original chapter, exhibiting the use of specially constructed Maple procedures that solve PDEs via many of the methods presented in the chapters. The results can be evaluated numerically or displayed graphically. * Two new chapters that present finite difference and finite element methods for the solution of PDEs. Newly constructed Maple procedures are provided and used to carry out each of these methods. All the numerical results can be displayed graphically. * A related FTP site that includes all the Maple code used in the text. * New exercises in each chapter, and answers to many of the exercises are provided via the FTP site. A supplementary Instructor's Solutions Manual is available. The book begins with a demonstration of how the three basic types of equations-parabolic, hyperbolic, and elliptic-can be derived from random walk models. It then covers an exceptionally broad range of topics, including questions of stability, analysis of singularities, transform methods, Green's functions, and perturbation and asymptotic treatments. Approximation methods for simplifying complicated problems and solutions are described, and linear and nonlinear problems not easily solved by standard methods are examined in depth. Examples from the fields of engineering and physical sciences are used liberally throughout the text to help illustrate how theory and techniques are applied to actual problems. With its extensive use of examples and exercises, this text is recommended for advanced undergraduates and graduate students in engineering, science, and applied mathematics, as well as professionals in any of these fields. It is possible to use the text, as in the past, without use of the new Maple material. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Find eBook