Calculus On Manifolds PDF EPUB Download

Calculus On Manifolds also available in docx and mobi. Read Calculus On Manifolds online, read in mobile or Kindle.

Calculus On Manifolds

A Modern Approach To Classical Theorems Of Advanced Calculus

Author: Michael Spivak

Publisher: Westview Press

ISBN:

Category: Science

Page: 160

View: 472

This little book is especially concerned with those portions of ”advanced calculus” in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level. The approach taken here uses elementary versions of modern methods found in sophisticated mathematics. The formal prerequisites include only a term of linear algebra, a nodding acquaintance with the notation of set theory, and a respectable first-year calculus course (one which at least mentions the least upper bound (sup) and greatest lower bound (inf) of a set of real numbers). Beyond this a certain (perhaps latent) rapport with abstract mathematics will be found almost essential.

A Visual Introduction to Differential Forms and Calculus on Manifolds

Author: Jon Pierre Fortney

Publisher: Springer

ISBN:

Category: Mathematics

Page: 468

View: 943

This book explains and helps readers to develop geometric intuition as it relates to differential forms. It includes over 250 figures to aid understanding and enable readers to visualize the concepts being discussed. The author gradually builds up to the basic ideas and concepts so that definitions, when made, do not appear out of nowhere, and both the importance and role that theorems play is evident as or before they are presented. With a clear writing style and easy-to- understand motivations for each topic, this book is primarily aimed at second- or third-year undergraduate math and physics students with a basic knowledge of vector calculus and linear algebra.

Stochastic Calculus in Manifolds

Author: Michel Emery

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 151

View: 547

Addressed to both pure and applied probabilitists, including graduate students, this text is a pedagogically-oriented introduction to the Schwartz-Meyer second-order geometry and its use in stochastic calculus. P.A. Meyer has contributed an appendix: "A short presentation of stochastic calculus" presenting the basis of stochastic calculus and thus making the book better accessible to non-probabilitists also. No prior knowledge of differential geometry is assumed of the reader: this is covered within the text to the extent. The general theory is presented only towards the end of the book, after the reader has been exposed to two particular instances - martingales and Brownian motions - in manifolds. The book also includes new material on non-confluence of martingales, s.d.e. from one manifold to another, approximation results for martingales, solutions to Stratonovich differential equations. Thus this book will prove very useful to specialists and non-specialists alike, as a self-contained introductory text or as a compact reference.

Semimartingales and Their Stochastic Calculus on Manifolds

Author: Laurent Schwartz

Publisher: Gaetan Morin Editeur Ltee

ISBN:

Category: Geometry, Differential

Page: 187

View: 125

Calculus on Heisenberg Manifolds

Author: Richard Beals

Publisher: Princeton University Press

ISBN:

Category: Mathematics

Page: 194

View: 654

The description for this book, Calculus on Heisenberg Manifolds. (AM-119), Volume 119, will be forthcoming.

A Tutorial Introduction to Differentiable Manifolds and Calculus on Manifolds

Author: Michiel Hazewinkel

Publisher:

ISBN:

Category: Differentiable manifolds

Page: 25

View: 831

Multivariable Mathematics

Linear Algebra, Multivariable, Calculus, and Manifolds

Author: Theodore Shifrin

Publisher: John Wiley & Sons

ISBN:

Category: Algebras, Linear

Page: 491

View: 623

Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis.

Lectures on the Geometry of Manifolds

Author: Liviu I. Nicolaescu

Publisher: World Scientific

ISBN:

Category: Mathematics

Page: 589

View: 332

Differential Manifolds and Theoretical Physics

Author:

Publisher: Academic Press

ISBN:

Category: Mathematics

Page: 393

View: 436

Differential Manifolds and Theoretical Physics

4-manifolds and Kirby Calculus

Author: Robert E. Gompf

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 558

View: 228

Since the early 1980s, there has been an explosive growth in 4-manifold theory, particularly due to the influx of interest and ideas from gauge theory and algebraic geometry. This book offers an exposition of the subject from the topological point of view. It bridges the gap to other disciplines and presents classical but important topological techniques that have not previously appeared in the literature. Part I of the text presents the basics of the theory at the second-year graduate level and offers an overview of current research. Part II is devoted to an exposition of Kirby calculus, or handlebody theory on 4-manifolds. It is both elementary and comprehensive. Part III offers in-depth treatments of a broad range of topics from current 4-manifold research. Topics include branched coverings and the geography of complex surfaces, elliptic and Lefschetz fibrations, $h$-cobordisms, symplectic 4-manifolds, and Stein surfaces. The authors present many important applications. The text is supplemented with over 300 illustrations and numerous exercises, with solutions given in the book. I greatly recommend this wonderful book to any researcher in 4-manifold topology for the novel ideas, techniques, constructions, and computations on the topic, presented in a very fascinating way. I think really that every student, mathematician, and researcher interested in 4-manifold topology, should own a copy of this beautiful book. --Zentralblatt MATH This book gives an excellent introduction into the theory of 4-manifolds and can be strongly recommended to beginners in this field ... carefully and clearly written; the authors have evidently paid great attention to the presentation of the material ... contains many really pretty and interesting examples and a great number of exercises; the final chapter is then devoted to solutions of some of these ... this type of presentation makes the subject more attractive and its study easier. --European Mathematical Society Newsletter

DIFFERENTIAL GEOMETRY OF MANIFOLDS

Author: QUDDUS KHAN

Publisher: PHI Learning Pvt. Ltd.

ISBN:

Category: Mathematics

Page: 256

View: 377

Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood. Differential geometry is concerned with the precise mathematical formulation of some of these questions, while trying to answer them using calculus techniques. The geometry of differentiable manifolds with structures is one of the most important branches of modern differential geometry. This well-written book discusses the theory of differential and Riemannian manifolds to help students understand the basic structures and consequent developments. While introducing concepts such as bundles, exterior algebra and calculus, Lie group and its algebra and calculus, Riemannian geometry, submanifolds and hypersurfaces, almost complex manifolds, etc., enough care has been taken to provide necessary details which enable the reader to grasp them easily. The material of this book has been successfully tried in classroom teaching. The book is designed for the postgraduate students of Mathematics. It will also be useful to the researchers working in the field of differential geometry and its applications to general theory of relativity and cosmology, and other applied areas. KEY FEATURES  Provides basic concepts in an easy-to-understand style.  Presents the subject in a natural way.  Follows a coordinate-free approach.  Includes a large number of solved examples and illuminating illustrations.  Gives notes and remarks at appropriate places.

Analysis On Manifolds

Author: James R. Munkres

Publisher: Westview Press

ISBN:

Category: Science

Page: 380

View: 379

A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.

Differentiable Manifolds

A First Course

Author: Lawrence Conlon

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 395

View: 795

This book is based on the full year Ph.D. qualifying course on differentiable manifolds, global calculus, differential geometry, and related topics, given by the author at Washington University several times over a twenty year period. It is addressed primarily to second year graduate students and well prepared first year students. Presupposed is a good grounding in general topology and modern algebra, especially linear algebra and the analogous theory of modules over a commutative, unitary ring. Although billed as a "first course" , the book is not intended to be an overly sketchy introduction. Mastery of this material should prepare the student for advanced topics courses and seminars in differen tial topology and geometry. There are certain basic themes of which the reader should be aware. The first concerns the role of differentiation as a process of linear approximation of non linear problems. The well understood methods of linear algebra are then applied to the resulting linear problem and, where possible, the results are reinterpreted in terms of the original nonlinear problem. The process of solving differential equations (i. e., integration) is the reverse of differentiation. It reassembles an infinite array of linear approximations, result ing from differentiation, into the original nonlinear data. This is the principal tool for the reinterpretation of the linear algebra results referred to above.

Clifford Algebra to Geometric Calculus

A Unified Language for Mathematics and Physics

Author: D. Hestenes

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 314

View: 280

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebm' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quatemions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Advanced Calculus

Revised

Author: Lynn Harold Loomis

Publisher: World Scientific Publishing Company

ISBN:

Category: Mathematics

Page: 596

View: 225

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Smooth Manifolds and Observables

Author: Jet Nestruev

Publisher: Springer Science & Business Media

ISBN:

Category: Mathematics

Page: 222

View: 349

This book gives an introduction to fiber spaces and differential operators on smooth manifolds. Over the last 20 years, the authors developed an algebraic approach to the subject and they explain in this book why differential calculus on manifolds can be considered as an aspect of commutative algebra. This new approach is based on the fundamental notion of observable which is used by physicists and will further the understanding of the mathematics underlying quantum field theory.

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee

Publisher: American Mathematical Soc.

ISBN:

Category: Mathematics

Page: 671

View: 372

Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hyper-surfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.

Differential Geometry and Mathematical Physics

Part I. Manifolds, Lie Groups and Hamiltonian Systems

Author: Gerd Rudolph

Publisher: Springer Science & Business Media

ISBN:

Category: Science

Page: 762

View: 497

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.

Differential Forms

Integration on Manifolds and Stokes's Theorem

Author: Steven H. Weintraub

Publisher: Academic Press

ISBN:

Category: Mathematics

Page: 256

View: 719

This text is one of the first to treat vector calculus using differential forms in place of vector fields and other outdated techniques. Geared towards students taking courses in multivariable calculus, this innovative book aims to make the subject more readily understandable. Differential forms unify and simplify the subject of multivariable calculus, and students who learn the subject as it is presented in this book should come away with a better conceptual understanding of it than those who learn using conventional methods. * Treats vector calculus using differential forms * Presents a very concrete introduction to differential forms * Develops Stokess theorem in an easily understandable way * Gives well-supported, carefully stated, and thoroughly explained definitions and theorems. * Provides glimpses of further topics to entice the interested student

Several Complex Variables and Complex Manifolds II

Author: M. J. Field

Publisher: Cambridge University Press

ISBN:

Category: Mathematics

Page: 220

View: 746

Aimed at the professional mathematician or mathematical physicist who wishes to acquire a working knowledge of this area of mathematics. Many exercises have been included and they form an integral part of the text.

Best Books