Differential Geometry From A Singularity Theory Viewpoint also available in docx and mobi. Read Differential Geometry From A Singularity Theory Viewpoint online, read in mobile or Kindle.

"Differential Geometry from a Singularity Theory Viewpoint provides a new look at the fascinating and classical subject of the differential geometry of surfaces in Euclidean spaces. The book uses singularity theory to capture some key geometric features of surfaces. It describes the theory of contact and its link with the theory of caustics and wavefronts. It then uses the powerful techniques of these theories to deduce geometric information about surfaces embedded in 3, 4 and 5-dimensional Euclidean spaces. The book also includes recent work of the authors and their collaborators on the geometry of sub-manifolds in Minkowski spaces."--

The Singularity School and Conference took place in Luminy, Marseille, from January 24th to February 25th 2005. More than 180 mathematicians from over 30 countries converged to discuss recent developments in singularity theory. The volume contains the elementary and advanced courses conducted by singularities specialists during the conference, general lectures on singularity theory, and lectures on applications of the theory to various domains. The subjects range from geometry and topology of singularities, through real and complex singularities, to applications of singularities.

This volume is a collection of papers presented at the XIII International Workshop on Real and Complex Singularities, held from July 27–August 8, 2014, in São Carlos, Brazil, in honor of María del Carmen Romero Fuster's 60th birthday. The volume contains the notes from two mini-courses taught during the workshop: on intersection homology by J.-P. Brasselet, and on non-isolated hypersurface singularities and Lê cycles by D. Massey. The remaining contributions are research articles which cover topics from the foundations of singularity theory (including classification theory and invariants) to topology of singular spaces (links of singularities and semi-algebraic sets), as well as applications to topology (cobordism and Lefschetz fibrations), dynamical systems (Morse-Bott functions) and differential geometry (affine geometry, Gauss-maps, caustics, frontals and non-Euclidean geometries). This book is published in cooperation with Real Sociedad Matemática Española (RSME)

This book presents some facts and methods of Mathematical Control Theory treated from the geometric viewpoint. It is devoted to finite-dimensional deterministic control systems governed by smooth ordinary differential equations. The problems of controllability, state and feedback equivalence, and optimal control are studied. Some of the topics treated by the authors are covered in monographic or textbook literature for the first time while others are presented in a more general and flexible setting than elsewhere. Although being fundamentally written for mathematicians, the authors make an attempt to reach both the practitioner and the theoretician by blending the theory with applications. They maintain a good balance between the mathematical integrity of the text and the conceptual simplicity that might be required by engineers. It can be used as a text for graduate courses and will become most valuable as a reference work for graduate students and researchers.

Original, well-written work of interest Presents for the first time (physical) field theories written in sheaf-theoretic language Contains a wealth of minutely detailed, rigorous computations, ususally absent from standard physical treatments Author's mastery of the subject and the rigorous treatment of this text make it invaluable

One of the most of exciting aspects is the general relativity pred- tion of black holes and the Such Big Bang. predictions gained weight the theorems through Penrose. singularity pioneered In various by te- books on theorems general relativity singularity are and then presented used to that black holes exist and that the argue universe started with a To date what has big been is bang. a critical of what lacking analysis these theorems predict-’ We of really give a proof a typical singul- theorem and this ity use theorem to illustrate problems arising through the of possibilities violations" and "causality weak "shell very crossing These singularities". add to the problems weight of view that the point theorems alone singularity are not sufficient to the existence of predict physical singularities. The mathematical theme of the book In order to both solid gain a of and intuition understanding good for any mathematical theory, one,should to realise it as model of try a a fam- iar non-mathematical theories have had concept. Physical an especially the important on of and impact development mathematics, conversely various modern theories physical rather require sophisticated mathem- ics for their formulation. both and mathematics Today, physics are so that it is often difficult complex to master the theories in both very s- in the of jects. However, case differential pseudo-Riemannian geometry or the general relativity between and mathematics relationship physics is and it is therefore especially close, to from interd- possible profit an ciplinary approach.

This book contains papers given at the International Singularity Conference held in 1991 at Lille.

Proceedings from a conference on geometry and partial differential equations.

Differential geometry and topology have become essential tools for many theoretical physicists. In particular, they are indispensable in theoretical studies of condensed matter physics, gravity, and particle physics. Geometry, Topology and Physics, Second Edition introduces the ideas and techniques of differential geometry and topology at a level suitable for postgraduate students and researchers in these fields. The second edition of this popular and established text incorporates a number of changes designed to meet the needs of the reader and reflect the development of the subject. The book features a considerably expanded first chapter, reviewing aspects of path integral quantization and gauge theories. Chapter 2 introduces the mathematical concepts of maps, vector spaces, and topology. The following chapters focus on more elaborate concepts in geometry and topology and discuss the application of these concepts to liquid crystals, superfluid helium, general relativity, and bosonic string theory. Later chapters unify geometry and topology, exploring fiber bundles, characteristic classes, and index theorems. New to this second edition is the proof of the index theorem in terms of supersymmetric quantum mechanics. The final two chapters are devoted to the most fascinating applications of geometry and topology in contemporary physics, namely the study of anomalies in gauge field theories and the analysis of Polakov's bosonic string theory from the geometrical point of view. Geometry, Topology and Physics, Second Edition is an ideal introduction to differential geometry and topology for postgraduate students and researchers in theoretical and mathematical physics.