Discrete Mathematics Pearson New International Edition also available in docx and mobi. Read Discrete Mathematics Pearson New International Edition online, read in mobile or Kindle.

For a one- or two-term introductory course in discrete mathematics. Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh’s algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

Discrete Mathematical Structures, Sixth Edition, offers a clear and concise presentation of the fundamental concepts of discrete mathematics. Ideal for a one-semester introductory course, this text contains more genuine computer science applications than any other text in the field. This book is written at an appropriate level for a wide variety of majors and non-majors, and assumes a college algebra course as a prerequisite.

This fifth edition continues to improve on the features that have made it the market leader. The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.

Originally published in 2004, reissued as part of Pearson's modern classic series.

This textbook provides an introduction to some fundamental concepts in Discrete Mathematics and the important role this subject plays in computer science. Every topic in this book has been started with necessary introduction and developed gradually up to the standard form. The book lays emphasis on the applicability of Mathematical structures to computer science. The content of this book is well supported with numerous solved examples with detailed explanation

Appropriate for courses in Signals and Systems. A market leader in previous editions, this book continues to offer complete, separate treatment survey of continuous and discrete linear systems. It utilizes a systems approach to solving practical engineering problems, rather than using the framework of traditional circuit theory. Numerous examples from circuit theory appear throughout, however, to illustrate the various systems techniques introduced. The Fourth Edition has been thoroughly updated to effectively integrate the use of computers and to accurately reflect the latest theoretical advances.

This classic book on formal languages, automata theory, and computational complexity has been updated to present theoretical concepts in a concise and straightforward manner with the increase of hands-on, practical applications. This new edition comes with Gradiance, an online assessment tool developed for computer science. Please note, Gradiance is no longer available with this book, as we no longer support this product.

Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications consists of 21 contributed chapters by subject experts. Chapters offer practical solutions and novel methods for recent research problems in the multidisciplinary applications of fractional order systems, such as FPGA, circuits, memristors, control algorithms, photovoltaic systems, robot manipulators, oscillators, etc. This book is ideal for researchers working in the modeling and applications of both continuous-time and discrete-time dynamics and chaotic systems. Researchers from academia and industry who are working in research areas such as control engineering, electrical engineering, mechanical engineering, computer science, and information technology will find the book most informative. Discusses multi-disciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems based on the new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many of the applications in the book

For one- or two-semester Basic Probability courses in the departments of Mathematics, Physics, Engineering, Statistics, Actuarial Science, Operations Research, and Computer Science. Probability is presented in a very clear way in this text: through interesting and instructive examples and exercises that motivate the theory, definitions, theorems, and methodology. Due to its unique organization, this text has also been successfully used in teaching courses in discrete probability.

Is there always a prime number between $n$ and $2n$? Where, approximately, is the millionth prime? And just what does calculus have to do with answering either of these questions? It turns out that calculus has a lot to do with both questions, as this book can show you. The theme of the book is approximations. Calculus is a powerful tool because it allows us to approximate complicated functions with simpler ones. Indeed, replacing a function locally with a linear--or higher order--approximation is at the heart of calculus. The real star of the book, though, is the task of approximating the number of primes up to a number $x$. This leads to the famous Prime Number Theorem--and to the answers to the two questions about primes. While emphasizing the role of approximations in calculus, most major topics are addressed, such as derivatives, integrals, the Fundamental Theorem of Calculus, sequences, series, and so on. However, our particular point of view also leads us to many unusual topics: curvature, Pade approximations, public key cryptography, and an analysis of the logistic equation, to name a few. The reader takes an active role in developing the material by solving problems. Most topics are broken down into a series of manageable problems, which guide you to an understanding of the important ideas. There is also ample exposition to fill in background material and to get you thinking appropriately about the concepts. Approximately Calculus is intended for the reader who has already had an introduction to calculus, but wants to engage the concepts and ideas at a deeper level. It is suitable as a text for an honors or alternative second semester calculus course.