Introduction To Vectors And Tensors 1 Dover Books On Mathematics also available in docx and mobi. Read Introduction To Vectors And Tensors 1 Dover Books On Mathematics online, read in mobile or Kindle.

Examines general Cartesian coordinates, the cross product, Einstein's special theory of relativity, bases in general coordinate systems, maxima and minima of functions of two variables, line integrals, integral theorems, and more. 1963 edition.

This convenient single-volume compilation of two texts offers both an introduction and an in-depth survey. Geared toward engineering and science students rather than mathematicians, its less rigorous treatment focuses on physics and engineering applications. A practical reference for professionals, it is suitable for advanced undergraduate and graduate students. 1976 edition.

"Remarkably comprehensive, concise and clear." — Industrial Laboratories "Considered as a condensed text in the classical manner, the book can well be recommended." — Nature Here is a clear introduction to classic vector and tensor analysis for students of engineering and mathematical physics. Chapters range from elementary operations and applications of geometry, to application of vectors to mechanics, partial differentiation, integration, and tensor analysis. More than 200 problems are included throughout the book.

Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.

Eminently readable, completely elementary treatment begins with linear spaces and ends with analytic geometry, covering multilinear forms, tensors, linear transformation, and more. 250 problems, most with hints and answers. 1972 edition.

This elementary introduction pays special attention to aspects of tensor calculus and relativity that students tend to find most difficult. Its use of relatively unsophisticated mathematics in the early chapters allows readers to develop their confidence within the framework of Cartesian coordinates before undertaking the theory of tensors in curved spaces and its application to general relativity theory. Topics include the special principle of relativity and Lorentz transformations; orthogonal transformations and Cartesian tensors; special relativity mechanics and electrodynamics; general tensor calculus and Riemannian space; and the general theory of relativity, including a focus on black holes and gravitational waves. The text concludes with a chapter offering a sound background in applying the principles of general relativity to cosmology. Numerous exercises advance the theoretical developments of the main text, thus enhancing this volume’s appeal to students of applied mathematics and physics at both undergraduate and postgraduate levels. Preface. List of Constants. References. Bibliography.

Prominent Russian mathematician's concise, well-written exposition considers n-dimensional spaces, linear and bilinear forms, linear transformations, canonical form of an arbitrary linear transformation, and an introduction to tensors. While not designed as an introductory text, the book's well-chosen topics, brevity of presentation, and the author's reputation will recommend it to all students, teachers, and mathematicians working in this sector.

No calculus needed, but this is not an elementary book. Introduces vectors, algebraic notation and basic ideas, vector algebra and scalars. Includes 386 exercises.

Designed to familiarize undergraduates with the methods of vector algebra and vector calculus, this text offers both a clear view of the abstract theory as well as a concise survey of the theory's applications to various branches of pure and applied mathematics. A chapter on differential geometry introduces readers to the study of this subject by the methods of vector algebra. The next section explores the many aspects of the theory of mechanics adaptable to the use of vectors, and a full discussion of the vector operator "nabla" proceeds to a treatment of potential theory and Laplace's equation. This includes applications to the theories of gravitation, hydrodynamics, and electricity. A brief chapter on four-dimensional vectors concludes the text.

This introductory treatment covers the basic concepts and machinery of stability theory. Full of examples, theorems, propositions, and problems, it is suitable for graduate students, professional mathematicians, and computer scientists. 1983 edition.