Martingale Limit Theory And Its Application also available in docx and mobi. Read Martingale Limit Theory And Its Application online, read in mobile or Kindle.

Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.

Statistical inference carries great significance in model building from both the theoretical and the applications points of view. Its applications to engineering and economic systems, financial economics, and the biological and medical sciences have made statistical inference for stochastic processes a well-recognized and important branch of statistics and probability. The class of semimartingales includes a large class of stochastic processes, including diffusion type processes, point processes, and diffusion type processes with jumps, widely used for stochastic modeling. Until now, however, researchers have had no single reference that collected the research conducted on the asymptotic theory for semimartingales. Semimartingales and their Statistical Inference, fills this need by presenting a comprehensive discussion of the asymptotic theory of semimartingales at a level needed for researchers working in the area of statistical inference for stochastic processes. The author brings together into one volume the state-of-the-art in the inferential aspect for such processes. The topics discussed include: Asymptotic likelihood theory Quasi-likelihood Likelihood and efficiency Inference for counting processes Inference for semimartingale regression models The author addresses a number of stochastic modeling applications from engineering, economic systems, financial economics, and medical sciences. He also includes some of the new and challenging statistical and probabilistic problems facing today's active researchers working in the area of inference for stochastic processes.

This is a survey of the recent developments in the rapidly expanding field of asymptotic distribution theory, with a special emphasis on the problems of time dependence and heterogeneity. The book is designed to be useful on two levels. First as a textbook and reference work, giving definitions of the relevant mathematical concepts, statements, and proofs of the important results from the probability literature, and numerous examples; and second, as an account of recent work in the field of particular interest to econometricians, including a number of important new results. It is virtually self-contained, with all but the most basic technical prerequisites being explained in their context; mathematical topics include measure theory, integration, metric spaces, and topology, with applications to random variables, and an extended treatment of conditional probability. Other subjects treated include: stochastic processes, mixing processes, martingales, mixingales, and near-epoch dependence; the weak and strong laws of large numbers; weak convergence; and central limit theorems for nonstationary and dependent processes. The functional central limit theorem and its ramifications are covered in detail, including an account of the theoretical underpinnings (the weak convergence of measures on metric spaces), Brownian motion, the multivariate invariance principle, and convergence to stochastic integrals. This material is of special relevance to the theory of cointegration.

This book will enable researchers and students of analysis to more easily understand research papers in which probabilistic methods are used to prove theorems of analysis, many of which have no other known proofs. The book assumes a course in measure and integration theory but requires little or no background in probability theory. It emplhasizes topics of interest to analysts, including random series, martingales and Brownian motion.

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.

In a way, the world is made up of approximations, and surely there is no exception in the world of statistics. In fact, approximations, especially large sample approximations, are very important parts of both theoretical and - plied statistics.TheGaussiandistribution,alsoknownasthe normaldistri- tion,is merelyonesuchexample,dueto thewell-knowncentrallimittheorem. Large-sample techniques provide solutions to many practical problems; they simplify our solutions to di?cult, sometimes intractable problems; they j- tify our solutions; and they guide us to directions of improvements. On the other hand, just because large-sample approximations are used everywhere, and every day, it does not guarantee that they are used properly, and, when the techniques are misused, there may be serious consequences. 2 Example 1 (Asymptotic? distribution). Likelihood ratio test (LRT) is one of the fundamental techniques in statistics. It is well known that, in the 2 “standard” situation, the asymptotic null distribution of the LRT is?,with the degreesoffreedomequaltothe di?erencebetweenthedimensions,de?ned as the numbers of free parameters, of the two nested models being compared (e.g., Rice 1995, pp. 310). This might lead to a wrong impression that the 2 asymptotic (null) distribution of the LRT is always? . A similar mistake 2 might take place when dealing with Pearson’s? -test—the asymptotic distri- 2 2 bution of Pearson’s? -test is not always? (e.g., Moore 1978).

The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation based on likelihood methods, estimating functions, and simulation techniques. Two chapters are devoted to high-frequency data. Multivariate models are also considered, including partially observed systems, asynchronous sampling, tests for simultaneous jumps, and multiscale diffusions. Statistical Methods for Stochastic Differential Equations is useful to the theoretical statistician and the probabilist who works in or intends to work in the field, as well as to the applied statistician or financial econometrician who needs the methods to analyze biological or financial time series.

Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data--nominal and ordinal--in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types--continuous, nominal, and ordinal--within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.

Set-Indexed Martingales offers a unique, comprehensive development of a general theory of Martingales indexed by a family of sets. The authors establish-for the first time-an appropriate framework that provides a suitable structure for a theory of Martingales with enough generality to include many interesting examples. Developed from first principles, the theory brings together the theories of Martingales with a directed index set and set-indexed stochastic processes. Part One presents several classical concepts extended to this setting, including: stopping, predictability, Doob-Meyer decompositions, martingale characterizations of the set-indexed Poisson process, and Brownian motion. Part Two addresses convergence of sequences of set-indexed processes and introduces functional convergence for processes whose sample paths live in a Skorokhod-type space and semi-functional convergence for processes whose sample paths may be badly behaved. Completely self-contained, the theoretical aspects of this work are rich and promising. With its many important applications-especially in the theory of spatial statistics and in stochastic geometry- Set Indexed Martingales will undoubtedly generate great interest and inspire further research and development of the theory and applications.