Pattern-recognition PDF EPUB Download

Pattern-recognition also available in docx and mobi. Read Pattern-recognition online, read in mobile or Kindle.

Pattern Recognition

Author: Sergios Theodoridis

Publisher: Academic Press

ISBN:

Category: Computers

Page: 984

View: 695

This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. · Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques · Many more diagrams included--now in two color--to provide greater insight through visual presentation · Matlab code of the most common methods are given at the end of each chapter. · More Matlab code is available, together with an accompanying manual, via this site · Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms. · An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869). Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.

Pattern Recognition

Author: Sergios Theodoridis

Publisher: Elsevier

ISBN:

Category: Computers

Page: 856

View: 373

Pattern recognition is a fast growing area with applications in a widely diverse number of fields such as communications engineering, bioinformatics, data mining, content-based database retrieval, to name but a few. This new edition addresses and keeps pace with the most recent advancements in these and related areas. This new edition: a) covers Data Mining, which was not treated in the previous edition, and is integrated with existing material in the book, b) includes new results on Learning Theory and Support Vector Machines, that are at the forefront of today's research, with a lot of interest both in academia and in applications-oriented communities, c) for the first time treats audio along with image applications since in today's world the most advanced applications are treated in a unified way and d) the subject of classifier combinations is treated, since this is a hot topic currently of interest in the pattern recognition community. * The latest results on support vector machines including v-SVM's and their geometric interpretation * Classifier combinations including the Boosting approach * State-of-the-art material for clustering algorithms tailored for large data sets and/or high dimensional data, as required by applications such as web-mining and bioinformatics * Coverage of diverse applications such as image analysis, optical character recognition, channel equalization, speech recognition and audio classification

Pattern Recognition in Biology

Author: Marsha S. Corrigan

Publisher: Nova Publishers

ISBN:

Category: Science

Page: 253

View: 806

Pattern recognition is the research area that studies the operation and design of systems that recognise patterns in data. It encloses subdisciplines like discriminant analysis, feature extraction, error estimation, cluster analysis, grammatical inference and parsing. This book presents research from around the world.

Chemometrics for Pattern Recognition

Author: Richard G. Brereton

Publisher: John Wiley & Sons

ISBN:

Category: Science

Page: 522

View: 576

Over the past decade, pattern recognition has been one of the fastest growth points in chemometrics. This has been catalysed by the increase in capabilities of automated instruments such as LCMS, GCMS, and NMR, to name a few, to obtain large quantities of data, and, in parallel, the significant growth in applications especially in biomedical analytical chemical measurements of extracts from humans and animals, together with the increased capabilities of desktop computing. The interpretation of such multivariate datasets has required the application and development of new chemometric techniques such as pattern recognition, the focus of this work. Included within the text are: ‘Real world’ pattern recognition case studies from a wide variety of sources including biology, medicine, materials, pharmaceuticals, food, forensics and environmental science; Discussions of methods, many of which are also common in biology, biological analytical chemistry and machine learning; Common tools such as Partial Least Squares and Principal Components Analysis, as well as those that are rarely used in chemometrics such as Self Organising Maps and Support Vector Machines; Representation in full colour; Validation of models and hypothesis testing, and the underlying motivation of the methods, including how to avoid some common pitfalls. Relevant to active chemometricians and analytical scientists in industry, academia and government establishments as well as those involved in applying statistics and computational pattern recognition.

Pattern Recognition and Image Preprocessing

Author: Sing T. Bow

Publisher: CRC Press

ISBN:

Category: Technology & Engineering

Page: 720

View: 918

Describing non-parametric and parametric theoretic classification and the training of discriminant functions, this second edition includes new and expanded sections on neural networks, Fisher's discriminant, wavelet transform, and the method of principal components. It contains discussions on dimensionality reduction and feature selection, novel co

Introduction to Pattern Recognition

Statistical, Structural, Neural, and Fuzzy Logic Approaches

Author: Menahem Friedman

Publisher: World Scientific

ISBN:

Category: Computers

Page: 329

View: 427

This book is an introduction to pattern recognition, meant for undergraduate and graduate students in computer science and related fields in science and technology. Most of the topics are accompanied by detailed algorithms and real world applications. In addition to statistical and structural approaches, novel topics such as fuzzy pattern recognition and pattern recognition via neural networks are also reviewed. Each topic is followed by several examples solved in detail. The only prerequisites for using this book are a one-semester course in discrete mathematics and a knowledge of the basic preliminaries of calculus, linear algebra and probability theory.

Pattern Recognition

From Classical to Modern Approaches

Author: Sankar K. Pal

Publisher: World Scientific

ISBN:

Category: Computers

Page: 612

View: 934

This volume, containing contributions by experts from all over the world, is a collection of 21 articles which present review and research material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, syntactic/linguistic, fuzzy-set-theoretic, neural, genetic-algorithmic and rough-set-theoretic to hybrid soft computing, with significant real-life applications. In addition, the book describes efficient soft machine learning algorithms for data mining and knowledge discovery. With a balanced mixture of theory, algorithms and applications, as well as up-to-date information and an extensive bibliography, Pattern Recognition: From Classical to Modern Approaches is a very useful resource. Contents: Pattern Recognition: Evolution of Methodologies and Data Mining (A Pal & S K Pal); Adaptive Stochastic Algorithms for Pattern Classification (M A L Thathachar & P S Sastry); Shape in Images (K V Mardia); Decision Trees for Classification: A Review and Some New Results (R Kothari & M Dong); Syntactic Pattern Recognition (A K Majumder & A K Ray); Fuzzy Sets as a Logic Canvas for Pattern Recognition (W Pedrycz & N Pizzi); Neural Network Based Pattern Recognition (V David Sanchez A); Networks of Spiking Neurons in Data Mining (K Cios & D M Sala); Genetic Algorithms, Pattern Classification and Neural Networks Design (S Bandyopadhyay et al.); Rough Sets in Pattern Recognition (A Skowron & R Swiniarski); Automated Generation of Qualitative Representations of Complex Objects by Hybrid Soft-Computing Methods (E H Ruspini & I S Zwir); Writing Speed and Writing Sequence Invariant On-line Handwriting Recognition (S-H Cha & S N Srihari); Tongue Diagnosis Based on Biometric Pattern Recognition Technology (K Wang et al.); and other papers. Readership: Graduate students, researchers and academics in pattern recognition.

Pattern Recognition

Proceedings of the 10th International Conference on ..., ICPR'90, Atlantic City, New Jersey, USA, 16-21 June, 1990. Conference A: Computer vision and Conference B: Pattern recognition systems and applications

Author: International Conference on Pattern Recognition

Publisher:

ISBN:

Category: Computer architecture

Page: 969

View: 727

Proceedings of the 10th International Conference on [title], held in Atlantic City, June 1990, and sponsored by the International Association for Pattern Recognition. Volume 1 contains the proceedings of Conference A, on computer vision, and Conference B, on pattern recognition systems and applications. Volume 2 contains the proceedings of Conference C, on image, speech, and signal processing, and Conference D, on computer architecture for vision in pattern recognition. Volume 1 is available individually at $90, volume 2 at $70. No subject index. Acidic paper. Annotation copyrighted by Book News, Inc., Portland, OR.

Neural Networks for Pattern Recognition

Author: Albert Nigrin

Publisher: MIT Press

ISBN:

Category: Computers

Page: 413

View: 624

In a simple and accessible way it extends embedding field theory into areas of machine intelligence that have not been clearly dealt with before.

Pattern Recognition and Neural Networks

Author: Brian D. Ripley

Publisher: Cambridge University Press

ISBN:

Category: Computers

Page: 403

View: 404

Ripley brings together two crucial ideas in pattern recognition: statistical methods and machine learning via neural networks. He brings unifying principles to the fore, and reviews the state of the subject. Ripley also includes many examples to illustrate real problems in pattern recognition and how to overcome them.

Best Books