Proof Core Books In Advanced Mathematics PDF EPUB Download

Proof Core Books In Advanced Mathematics also available in docx and mobi. Read Proof Core Books In Advanced Mathematics online, read in mobile or Kindle.


Author: C. Plumpton

Publisher: Macmillan International Higher Education


Category: Logic, Symbolic and mathematical

Page: 88

View: 797

A Logical Introduction to Proof

Author: Daniel Cunningham

Publisher: Springer Science & Business Media


Category: Mathematics

Page: 356

View: 632

The book is intended for students who want to learn how to prove theorems and be better prepared for the rigors required in more advance mathematics. One of the key components in this textbook is the development of a methodology to lay bare the structure underpinning the construction of a proof, much as diagramming a sentence lays bare its grammatical structure. Diagramming a proof is a way of presenting the relationships between the various parts of a proof. A proof diagram provides a tool for showing students how to write correct mathematical proofs.

Writing Proofs in Analysis

Author: Jonathan M. Kane

Publisher: Springer


Category: Mathematics

Page: 347

View: 1000

This is a textbook on proof writing in the area of analysis, balancing a survey of the core concepts of mathematical proof with a tight, rigorous examination of the specific tools needed for an understanding of analysis. Instead of the standard "transition" approach to teaching proofs, wherein students are taught fundamentals of logic, given some common proof strategies such as mathematical induction, and presented with a series of well-written proofs to mimic, this textbook teaches what a student needs to be thinking about when trying to construct a proof. Covering the fundamentals of analysis sufficient for a typical beginning Real Analysis course, it never loses sight of the fact that its primary focus is about proof writing skills. This book aims to give the student precise training in the writing of proofs by explaining exactly what elements make up a correct proof, how one goes about constructing an acceptable proof, and, by learning to recognize a correct proof, how to avoid writing incorrect proofs. To this end, all proofs presented in this text are preceded by detailed explanations describing the thought process one goes through when constructing the proof. Over 150 example proofs, templates, and axioms are presented alongside full-color diagrams to elucidate the topics at hand.

Examinations in Mathematics


Publisher: Macmillan International Higher Education



Page: 197

View: 667

A Level Further Mathematics for OCR A Pure Core Student Book 1 (AS/Year 1)

Author: Vesna Kadelburg

Publisher: Cambridge University Press


Category: Juvenile Nonfiction

Page: 208

View: 684

New 2017 Cambridge A Level Maths and Further Maths resources to help students with learning and revision. Written for the OCR AS/A Level Further Mathematics specification for first teaching from 2017, this print Student Book covers the Pure Core content for AS and the first year of A Level. It balances accessible exposition with a wealth of worked examples, exercises and opportunities to test and consolidate learning, providing a clear and structured pathway for progressing through the course. It is underpinned by a strong pedagogical approach, with an emphasis on skills development and the synoptic nature of the course. Includes answers to aid independent study.

Discrete Mathematics

Proof Techniques and Mathematical Structures

Author: R. C. Penner

Publisher: World Scientific


Category: Computers

Page: 469

View: 616

This book offers an introduction to mathematical proofs and to the fundamentals of modern mathematics. No real prerequisites are needed other than a suitable level of mathematical maturity. The text is divided into two parts, the first of which constitutes the core of a one-semester course covering proofs, predicate calculus, set theory, elementary number theory, relations, and functions, and the second of which applies this material to a more advanced study of selected topics in pure mathematics, applied mathematics, and computer science, specifically cardinality, combinatorics, finite-state automata, and graphs. In both parts, deeper and more interesting material is treated in optional sections, and the text has been kept flexible by allowing many different possible courses or emphases based upon different paths through the volume.

The Elements of Advanced Mathematics

Author: Steven G. Krantz

Publisher: CRC Press


Category: Mathematics

Page: 390

View: 587

The Elements of Advanced Mathematics, Fourth Edition is the latest edition of the author’s bestselling series of texts. Expanding on previous editions, the new Edition continues to provide students with a better understanding of proofs, a core concept for higher level mathematics. To meet the needs of instructors, the text is aligned directly with course requirements. The author connects computationally and theoretically based mathematics, helping students develop a foundation for higher level mathematics. To make the book more pertinent, the author removed obscure topics and included a chapter on elementary number theory. Students gain the momentum to further explore mathematics in the real world through an introduction to cryptography. These additions, along with new exercises and proof techniques, will provide readers with a strong and relevant command of mathematics.

Proofs and Fundamentals

A First Course in Abstract Mathematics

Author: Ethan D. Bloch

Publisher: Springer Science & Business Media


Category: Mathematics

Page: 424

View: 511

The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.

How to Think about Analysis

Author: Lara Alcock

Publisher: Oxford University Press, USA


Category: Mathematics

Page: 246

View: 828

Analysis is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared.

Exploring Mathematics

An Engaging Introduction to Proof

Author: John Meier

Publisher: Cambridge University Press


Category: Mathematics

Page: 300

View: 507

Exploring Mathematics gives students experience with doing mathematics - interrogating mathematical claims, exploring definitions, forming conjectures, attempting proofs, and presenting results - and engages them with examples, exercises, and projects that pique their interest. Written with a minimal number of pre-requisites, this text can be used by college students in their first and second years of study, and by independent readers who want an accessible introduction to theoretical mathematics. Core topics include proof techniques, sets, functions, relations, and cardinality, with selected additional topics that provide many possibilities for further exploration. With a problem-based approach to investigating the material, students develop interesting examples and theorems through numerous exercises and projects. In-text exercises, with complete solutions or robust hints included in an appendix, help students explore and master the topics being presented. The end-of-chapter exercises and projects provide students with opportunities to confirm their understanding of core material, learn new concepts, and develop mathematical creativity.

Best Books